Хостинги и домены

Конструкция и основные компоненты привода cd rom. Open Library - открытая библиотека учебной информации. Механизм загрузки диска

Реферат

Выполнил студент 1 курса Мишаков Андрей

Финансовая академия при правительстве Российской Федерации

Москва 2001 г.

Введение

В начале 80-х годов голландская фирма «Philips» объявила о совершенной ею революцией в области звуковоспроизведения. Ее инженеры придумали то, что сейчас пользуется огромной популярностью - Это лазерные диски и проигрыватели.

За последние несколько лет компьютерные устройства для чтения компакт-дисков (CD), называемые CD-ROM, стали практически необходимой частью любого компьютера (или сети). Это произошло потому, что разнообразные программные продукты (прежде всего игры и базы данных) стали занимать значительное количество места, и поставка их на дискетах оказалась чрезмерно дорогостоящей и ненадёжной. Поэтому их стали поставлять на CD (таких же, как и обычные музыкальные), а большинство современных игр и баз данных работает прямо с CD, не требуя копирования на жёсткий диск.

Запись на CD при помощи обычных CD-ROM невозможна (существуют, правда, устройства CD-R и CD-RW с помощью которых возможны чтение-однократная запись и чтение-запись-перезапись, соответственно).

CD-ROM способны не только считывать компакт-диски с данными, но и проигрывать музыкальные диски. (Впрочем в некоторых моделях её нет, и если вам нужна, проверяйте её наличие.) Для этого у них на передней панели есть выход для наушников, но проигрывание может производиться и через усилитель звуковой карты, если она имеется. Проигрыванием музыкального диска управляет компьютер, но некоторые CD-ROM имеют для этой цели кнопки на передней панели. Качество звука, выдаваемое CD-ROM, ощутимо ниже, чем даже у простеньких переносных CD-плееров.

При помощи CD-ROM компьютер также может проигрывать Video- CD и CD-I (не путать с лазерными видеодисками LDV, имеющими гораздо больший диаметр, чем CD).

УСТРОЙСТВО НАКОПИТЕЛЕЙ CD-ROM

Устройство привода CD-ROM

Типовой привод состоит из платы электроники, шпиндельного двигателя, системы оптической считывающей головки и системы загрузки диска.

На плате электроники размещены все управляющие схемы привода, интерфейс с контроллером компьютера, разъемы интерфейса и выхода звукового сигнала. Большинство приводов использует одну плату электроники, однако в некоторых моделях отдельные схемы выносятся на вспомогательные небольшие платы.

Шпиндельный двигатель служит для приведения диска во вращение с постоянной или переменной линейной скоростью. Сохранение постоянной линейной скорости требует изменения угловой скорости диска в зависимости от положения оптической головки. При поиске фрагментов диск может вращаться с большей скоростью, нежели при считывании, поэтому от шпиндельного двигателя требуется хорошая динамическая характеристика; двигатель используется как для разгона, так и для торможения диска.

На оси шпиндельного двигателя закреплена подставка, к которой после загрузки прижимается диск. Поверхность подставки обычно покрыта резиной или мягким пластиком для устранения проскальзывания диска. Прижим диска к подставке осуществляется при помощи шайбы, расположенной с другой стороны диска; подставка и шайба содержат постоянные магниты, сила, притяжения которых прижимает шайбу через диск к подставке.

Система оптической головки состоит из самой головки и системы ее перемещения. В головке размещены лазерный излучатель, на основе инфракрасного лазерного светодиода, система фокусировки, фотоприемник и предварительный усилитель. Система фокусировки представляет собой подвижную линзу, приводимую в движение электромагнитной системой voice coil (звуковая катушка), сделанной по аналогии с подвижной системой громкоговорителя. Изменение напряженности магнитного поля вызывают перемещение линзы и пере фокусировку лазерного луча. Благодаря малой инерционности такая система эффективно отслеживает вертикальные биения диска даже при значительных скоростях вращения.

Система перемещения головки имеет собственный приводной двигатель, приводящий в движение каретку с оптической головкой при помощи зубчатой либо червячной передачи. Для исключения люфта используется соединение с начальным напряжением: при червячной передаче - подпружиненные шарики, при зубчатой - подпружиненные в разные стороны пары шестерней.

Система загрузки диска выполняется в двух вариантах: с использованием специального футляра для диска (caddy), вставляемого в приемное отверстие привода, и с использованием выдвижного лотка (tray), на который кладется сам диск. В обоих случаях система содержит двигатель, приводящий в движение лоток или футляр, а также механизм перемещения рамы, на которой закреплена вся механическая система вместе со шпиндельным двигателем и приводом оптической головки, в рабочее положение, когда диск ложится на подставку шпиндельного двигателя.

При использовании обычного лотка привод невозможно установить в иное положение, кроме горизонтального. В приводах, допускающих монтаж в вертикальном положении, конструкция лотка предусматривает фиксаторы, удерживающие диск при выдвинутом лотке.

На передней панели привода обычно расположены кнопка Eject для загрузки/выгрузки диска, индикатор обращения к приводу и гнездо для подключения наушников с электронным или механическим регулятором громкости. В ряде моделей добавлена кнопка Play/Next для запуска проигрывания звуковых дисков и перехода между звуковыми дорожками; кнопка Eject при этом обычно используется для остановки проигрывания без выбрасывания диска. На некоторых моделях с механическим регулятором громкости, выполненным в виде ручки, проигрывание и переход осуществляются при нажатии на торец регулятора.

Большинство приводов также имеет на передней панели небольшое отверстие, предназначенное для аварийного извлечения диска в тех случаях, когда обычным способом это сделать невозможно - например, при выходе из строя привода лотка или всего CD-ROM, при пропадании питания и т.п. В отверстие нужно вставить шпильку или распрямленную скрепку и аккуратно нажать - при этом снимается блокировка лотка или дискового футляра, и его можно выдвинуть вручную.

Устройство компакт - диска

Стандартный диск состоит из трех слоев: подложка из поликарбоната, на которой отштампован рельеф диска, намыленное на нее отражающее покрытие из алюминия, золота, серебра или другого сплава, и более тонкий защитный слой поликарбоната или лака, на который наносятся надписи и рисунки. Hекотоpые диски «подпольных» производителей имеют очень тонкий защитный слой, либо не имеют его вовсе, отчего отражающее покрытие довольно легко повредить. информационный рельеф диска состоит из спиральной дорожки, идущей от центра к периферии, вдоль которой расположены углубления (питы). информация кодируется чередованием питов и пpомежутков между ними.

Считывание информации с диска происходит за счёт регистрации изменений интенсивности отражённого от алюминиевого слоя излучения маломощного лазера. Приёмник или фотодатчик определяет, отразился ли луч от гладкой поверхности, был ли он рассеян или поглощен. Рассеивание или поглощение луча происходит в местах, где в процессе записи были нанесены углубления (штрихи). Сильное отражение луча происходит там, где этих углублений нет. Фотодатчик, размещённый в накопителе CD - ROM, воспринимает рассеянный луч, отражённый от поверхности диска. Затем эта информация в виде электрических сигналов поступает на микропроцессор, который преобразует эти сигналы в двоичные данные или звук.

Глубина каждого штриха на диске равна 0.12 мкм, ширина - 0.6 мкм. Они расположены вдоль спиральной дорожки, расстояние между соседними витками которой составляет 1.6 мкм, что соответствует плотности 16000 витков на дюйм или 625 витков на миллиметр. Длина штрихов вдоль дорожки записи может колебаться от 0.9 до 3.3 мкм. Дорожка начинается на некотором расстоянии от центрального отверстия и заканчивается примерно в 5 мм от внешнего края.

Если на компакт - диске необходимо отыскать место записи определённых данных, то его координаты предварительно считываются из оглавления диска, после чего считывающее устройство перемещается к нужному витку спирали и ждёт появления определённой последовательности битов.

В каждом блоке диска, записанного в формате CD - DA (аудиокомпакт - диск), содержится 2352 байт. На диске CD - ROM 304 из них используется для синхронизации, идентификации и коррекции кодов ошибок, а оставшиеся 2048 байт - для хранения полезной информации. Поскольку за секунду считывается 75 блоков, скорость считывания данных с дисков CD - ROM составляет 153 600 байт/с (односкоростной CD - ROM), что равно 150 Кбайт/с.

Поскольку на компакт - диске может содержаться максимальный объём данных, который считывается 74 мин, а за секунду считывается 75 блоков по 2048 байт, нетрудно подсчитать, что максимальная ёмкость диска CD - ROM составит 681 984 000 байт (около 650 Мбайт).

Алгоритм работы накопителя CD-ROM

Полупроводниковый лазер генерирует маломощный инфракрасный луч, который попадает на отражающее зеркало.

Серводвигатель по командам встроенного микропроцессора, смещает подвижную каретку с отражающим зеркалом к нужной дорожке на компакт - диске.

Отражённый от диска луч фокусируется линзой, расположенной под диском, отражается от зеркала и попадает на разделительную призму.

Разделительная призма направляет отражённый луч на другую фокусирующую линзу.

Эта линза направляет отражённый луч на фотодатчик, который преобразует световую энергию в электрические импульсы.

Сигналы с фотодатчика декодируются встроенным микропроцессором и передаются в компьютер в виде данных.

Штрихи, нанесённые на поверхность диска, имеют разную длину. Интенсивность отражённого луча изменяется, соответственно изменяя электрический сигнал, поступающий на фотодатчик. Биты данных считываются как переходы между высокими и низкими уровнями сигналов, которые физически записываются как начало и конец каждого штриха.

Поскольку для программных файлов и файлов с данными важен каждый бит, в накопителях CD-ROM используются весьма сложные алгоритмы обнаружения и коррекции ошибок.

Благодаря таким алгоритмам вероятность неправильного считывания данных составляет менее 0.125 . Другими словами, безошибочно считывается два квадриллиона дисков, что соответствует стопке компакт - дисков высотой около двух миллиардов километров.

Для реализации этих методов коррекции ошибок к каждым 2048 полезным байтам добавляется 288 контрольных. Это позволяет восстанавливать даже сильно повреждённые последовательности данных (длиной до 1000 ошибочных битов). Использование столь сложных методов обнаружения и коррекции ошибок связано, во- первых, с тем, что компакт - диски весьма подвержены внешним воздействиям, а, во- вторых, потому, что подобные носители изначально разрабатывались лишь для записи звуковых сигналов, требования к точности которых не столь высоки.

ПАРАМЕТРЫ НАКОПИТЕЛЕЙ CD-ROM

Время доступа (access time)

Время доступа к данным для накопителей CD - ROM определяется точно также, как и для жёстких дисков. Оно равняется задержке между получением команды и моментом считывания первого бита данных. Время доступа измеряется в миллисекундах и его стандартное паспортное значение для накопителей 4х скоростных приблизительно равно 200 мс. При этом имеется в виду среднее время доступа, поскольку реальное время доступа зависит от расположения данных на диске. Очевидно, что при работе на внутренних дорожках диска время доступа будет меньше, чем при считывании информации с внешних дорожек. Поэтому в паспортах на накопители приводится среднее время доступа, определяемое как среднее значение при выполнении нескольких случайных считываний данных с диска.

Очевидно, что чем меньше время доступа, тем лучше, особенно в тех случаях, когда данные нужно находить и считывать быстро. Время доступа к данным на CD - ROM постоянно сокращается. Заметим, что этот параметр для накопителей CD - ROM намного хуже, чем для жёстких дисков (85-500 мс для CD - ROM и 10 мс для жёстких дисков).Столь существенная разница объясняется принципиальными различиями в конструкциях: в жёстких дисках используется несколько головок и диапазон их механического перемещения меньше. Накопители CD - ROM используют один лазерный луч, и он перемещается вдоль всего диска. К тому же данные на компакт - диске записаны вдоль спирали и после перемещения считывающей головки для чтения данной дорожки необходимо ещё ожидать, когда лазерный луч падает на участок с необходимыми данными. При чтении внешних дорожек время доступа больше, нежели при чтении внутренних дорожек.

Обычно, когда увеличивается скорость передачи данных, соответственно уменьшается и время доступа.

Скорость передачи данных (dats-transfer rate)

Пpи стандаpтной скоpости вpащения скоpость пеpедачи данных составляет около 150 кб/с. В двух- и более скоpостных CD-ROM диск вpащается с пpопоpционально большей скоpостью, и пpопоpционально повышается скоpость пеpедачи (напpимеp, 1200 кб/с для 8-скоpостного).

Из-за того, что физические паpаметpы диска (неодноpодность массы, эксцентpиситет и т.п.) стандаpтизиpованы для основной скоpости вpащения, на скоpостях, больших 4-6, уже возникают значительные колебания диска, и надежность считывания, особенно для дисков нелегального пpоизводства, может ухудшаться. Hекотоpые CD-ROM пpи ошибках чтения могут снижать скоpость вpащения диска, однако большинство из них после этого не могут возвpащаться к максимальной скорости вплоть до смены диска.

Hа скоpостях свыше 4000-5000 об/мин надежное считывание становится пpактически невозможным, поэтому последние модели 10- и более скоpостных CD-ROM огpаничивают веpхний пpедел скоpости вpащения. Пpи этом на внешних доpожках скоpость пеpедачи достигает номинальной (напpимеp, 1800 кб/с для 12-скоpостных моделей, а по меpе пpиближения к внутpенним - падает до 1200-1300 кб/с.

Для указания скорости чтения CD по сравнению со стандартом Audio CD (CD-DA) обычно применяют цифры 24x, 32x, 34x и тд.. Однако за последнее время технология немного изменилась. Первые модели CD-ROM использовали постоянную линейную скорость чтения (CLV). Это требовало изменения скорости вращения диска при перемещении головки. Для устройств 1x (150kb/s) эта скорость лежала в диапазоне 200-530об/мин. Устройства 2x - 12x скоростные просто повышали скорость вращения. Однако уже увеличение скорости до 12x требует частоты вращения 2400-6360об/мин что очень велико для сменного носителя (часто также плохо отцентрированного). К тому же разная скорость вращения для разных областей диска повышает время доступа, т.к. при перемещении головки необходимо и соответственно изменять скорость вращения диска. Дальнейшее повышение скорости таким способом очень проблематично, поэтому производители перешли к технологии P-CAV и CAV. Первая предусматривает переход от постоянной линейной скорости к постоянной угловой скорости (CAV) на внешних дорожках диска, а вторая использует постоянную угловую скорость для всего диска. В связи с этим цифры типа 32x немного утрачивают свое значение, т.к. обычно относятся к внешней стороне диска, а информация на CD записывается начиная с внутренних дорожек и на незаполненных полностью дисках эта скорость вообще не достигается.

Размер блока данных (data block size)

Под размером блока данных (data block size) понимают минимальное количество байт, которые передаются на компьютер через интерфейсную карту. Иначе говоря, это единица информации, с которой оперирует контроллер привода. Минимальный размер блока данных в соответствии со спецификацией МРС равен 16 Кбайт. Поскольку файлы на компакт-диске обычно достаточно большие, то промежутки между блоками данных ничтожно малы.

Размер буфера

Во многих накопителях CD-ROM имеются встроенные буферы, или кэш - память. Эти буферы представляют собой устанавливаемые на плате накопителя микросхемы памяти для записи считанных данных, что позволяет передавать в компьютер за одно сообщение большие массивы данных. Обычно ёмкость буфера составляет 256 Кбайт, хотя выпускаются модели как с большими, так и с меньшими объёмами (чем больше - тем лучше!). Как правило, в более быстродействующих устройствах ёмкость буфера больше. Это делается для достижения более высоких скоростей передачи данных.

Накопители, в которых есть буфер, обладают рядом преимуществ. Благодаря буферу данные в компьютер могут передоваться с постоянной скоростью. Например, данные для считывания обычно разбросаны по диску и, поскольку накопители CD-ROM имеют относительно большое время доступа, это может привести к тому, что считываемые данные будут поступать в компьютер с задержками. Это практически незаметно при работе с текстами, но если у накопителя большое время доступа и нет буфера данных, при выводе изображений или звукового сопровождения возникающие паузы сильно действуют на нервы. Кроме того, если для управления накопителями используются достаточно сложные программы - драйверы, то в буфер может быть заранее записано оглавление диска, и обращение к фрагменту запрашиваемых данных происходит намного быстрее, чем при поиске с «нуля».

Поддержка проигрывания аудиодисков

Поддержка проигрывания аудиодисков означает, что с помощью привода CD-ROM вы сможете слушать обычные музыкальные компакт-диски. Этой возможностью обладают практически все современные модели приводов. Некоторые модели не требуют для этого специальных программ - воспризведение аудио-CD выполняется на «аппаратном» уровне. Для включения этого режима на передней панели привода имеется специальная кнопка.

Поддержка формата CD-ROM/XA

Подразумевается использование дисков формата ХА, поддерживающего хранение аудио- и видеоданных единым блоком, в который также включается информация о синхронизации звука. Данные на аудиодисках и CD-ROM хранятся на дорожках, вмещающих 24-байтовые «кадры», проигрываемые со скоростью 75 кадров в секунду. Хранящиеся данные могут включать звук, текст, статические и динамическме изображения. При содержании в обычнои формате каждый тип должен располагаться на отдельной дорожке, когда в формате ХА данные различного типа могут храниться на одной дорожке.

Механизм загрузки диска

Существует два принципиально разных типа механизмов для загрузки компакт - дисков: в контейнеры накопителя и в выдвижные лотки. Сегодня выпускают и накопители, в которых можно сразу загрузить несколько компакт - дисков. Эти устройства похожи на многодисковые проигрыватели для автомобилей.

Контейнеры - этот механизм загрузки дисков используется в большинстве высококачественных накопителях на компакт - дисках. Диск устанавливается в специальный плотно закрывающийся контейнер с подвижной металлической заслонкой. У него есть крышка, которую откидывают исключительно для того, чтобы поместить диск в контейнер или вынуть его; всё остальное время крышка остаётся закрытой. При установке контейнера в накопитель металлическая заслонка специальным механизмом сдвигается в сторону, открывая лазерному лучу путь к поверхности компакт - диска. Контейнеры - это самый удобный способ загрузки дисков. Если все ваши диски имеют контейнеры, то вам остаётся только выбрать нужный и вставить его в накопитель. Контейнер можно спокойно брать в руки, не опасаясь запачкать или повредить поверхность компакт - диска. Помимо того, что контейнер защищает диск от загрязнения и повреждений, при таком способе он устанавливается в накопитель более точно. Это уменьшает погрешности позиционирования считывающего устройства и в конечном счёте уменьшает время доступа к данным. Единственным недостатком контейнеров является их высокая стоимость. Ещё одним немаловажным достоинством накопителей, рассчитанных на диски в контейнерах, является то, что их можно устанавливать даже боком. С накопителями с выдвижными лотками такую операцию выполнить невозможно.

Выдвижные лотки. Большинство простых накопителей на компакт - дисках для установки диска используют выдвижные лотки. Это такие же устройства, которые применяются в проигрывателях аудиокомпакт - дисков класса CD - DA. Поскольку диски не надо укладывать в отдельные контейнеры, механизм загрузки получается боле дешевым. Правда, каждый раз при установке нового диска его необходимо брать в руки, а это повышает риск испачкать или поцарапать его.

Лоток сам по себе является весьма ненадёжной конструкцией. Его довольно легко сломать, например неосторожно задев локтём или уронив что-нибудь с верху в тот момент, когда он выдвинут из накопителя. Кроме того любая грязь, попавшая на диск или на лоток, втягивается внутрь устройства при возврате механизма в рабочее положение. Поэтому накопители с лотками нельзя применять в промышленных или других неблагоприятных внешних условиях. К тому же на лотке диск не располагается так безопасно, как в контейнере. Если компакт - диск уложен на лоток с перекосом, то при его загрузке может быть повреждён и диск и накопитель.

Чтение CD-RW

Кроме устройств для однократной записи на «золотые» диски, которые могут быть прочитаны на любом устройстве CD-ROM, недавно появились также устройства для чтения и записи перезаписываемых CD (CD-RW = CD ReWritabe). Из-за другой отражающей способности для их чтения необходимо применение специальной технологии, ее назвали MultiRead. Способность устройств CD-ROM читать такие диски должна учитываться (такой способностью обладают следующие CD-ROMы Hitachi CDR-8335; Samsung SCR-3230; Sony CDU-711; Teac CD-532E; NEC CDR-1900A; ASUS CD-S340 и др.). Для полноценной работы требуется также и поддержка со стороны операционной системы файловой системы CD-RW UDF 1.5.

Пылезащищённость

Главными врагами устройства на компакт-дисках являются пыль и грязь. Их попадание в оптическое устройство или в механизм приводит к ошибкам считывания данных или, в лучшем случае, к снижению быстродействия. В одних накопителях линзы и прочие отвесные узлы располагаются в отдельных герметизированных отсеках, в других для предотвращения попадания пыли внутрь накопителя используются своеобразные «шлюзы» из двух заслонок (внешней и внутренней). Все эти меры позволяют продлить срок службы устройства. Накопители для дисков в контейнерах значительно лучше защищены от неблагоприятных факторов, чем модели с выдвижными лотками. В промышленных условиях можно пользоваться только ими.

Автоматическая очистка линз

Если линзы лазерного устройства загрязнены, считывание данных замедляется, поскольку очень много времени уходит на повторные операции поиска и чтение (в худшем случае данные могут вообще не считываться). В таких случаях необходимо использовать специальные чистящие диски. В некоторых современных высококачественных моделях накопителей имеется встроенное устройство очистки линз. Оно очень полезно, когда компьютер работает в сложных внешних условиях или вы не можете содержать своё рабочее место в чистоте.

Внешние и внутренние накопители

При выборе модели накопителя на компакт-дисках (внешний или внутренний) необходимо учитывать то, каким образом он будет использоваться и планируется ли модернизация компьютера. Каждый из этих типов накопителей имеет свои достоинства и недостатки. Вот некоторые из них: внешние накопители - эти портативные устройства прочнее и крупнее, чем встроенные, приобретать их рекомендуется только в случае нехватки места внутри компьютера или если необходимо подключить накопитель то к одному компьютеру, то к другому. Если в каждом из них имеется SCSI - адаптер, то эта процедура сводится к отключению накопителя от одного компьютера и подключению к другому. Внутренние накопители - эти устройства рекомендуется приобретать, если в компьютере есть свободный отсек или накопитель планируется использовать только на одном компьютере. Во всех современных компьютерах устанавливаются накопители на компакт - дисках.

Интерфейсы

Довольно часто фирмы производители поставляют привод CD-ROM с обязательной картой контроллера, на которой реализован так называемый (собственный) proprietary-интерфейс. Обычно это собственная реализация одной из версий интерфейсов IDE или SCSI. Часто при покупке накопителя на CD-ROM в составе Multimedia Kit на звуковой карте находится именно proprietary-интерфейс. Стандартами де-факто для интерфейсов приводов компакт-дисков стали спецификации Mitsumi, Panasonic и Sony. Одним из популярных интерфейсов всех приводов, включая приводо CD-ROM, является SCSI или SCSI-2.

Как известно, отличительной особенностью интерфейса IDE является реализация функции контроллера в самом накопителе. Именно поэтому подключение подобных приводов к компьютеру выполняется через достаточно простенькую плату адаптера. Данный интерфейс поддерживает, как правило программный ввод-вывод. Подсоединение привода к плате интерфейса выполняется посредством плоского кабеля, который отличается обычно по числу контактов в зависимости от фирмы - производителя накопителя (Sony - 34-контактный, Panasonic - 40-контактный кабель).

Компания Western Digital разработала так называемую спецификацию Enchanced IDE. Этот документ поддержали практически все ведущие компании по производству накопителей. Этот интерфейс позволяет подключать одновременно до четырех приводов жестких дисков. Но самое главное, спецификация Enchanced IDE позволяет не только увеличить количество подключаемых устройств, но и использовать другие типы устройств, например приводы CD-ROM или стримеры. В частности, Western Digital для поддержки накопителей CD-ROM с интерфейсом IDE предлагает протокол ATAPI (ATA Packed Interface). ATAPI является расширением протокола ATA и требует незначительных изменений в системной BIOS. В общем случае используется специальный драйвер. В последнее время появились накопители, которые поддерживают не только интерфейс IDE, но и EIDE/ATAPI.

Как известно, интерфейс SCSI стал одним из важнейших промышленных стандартов для подключения таких периферийных устройств, как, например, винчестеры, стримеры, лазерные принтеры, приводы CD-ROM и т.п. Необходимо отметить, что SCSI - интерфейс более высокого уровня, нежели IDE. Физически SCSI-шина представляет собой плоский кабель с 50-контактными раз"емами, через которые можно подключить до восьми периферийных устройств. Стандарт SCSI определяет два способа передачи сигналов - синфазный и дифференциальный. Версии шины SCSI с дифференциальной передачей сигнала даят увеличить длину шины. Чтобы гарантировать качество сигналов на магистрали SCSI, линии шины должны иметь согласование с обеих сторон (набор согласующих резисторов, или терминатор).

Версия интерфейса SCSI-2 позволяет повысить пропускную способность магистрали за счет увеличения тактовой частоты обмена и сокращения критических временных параметров шины, применения новейших БИС и высококачественных кабелей. Таким образом реализуется «скоростной» вариант SCSI-2 - Fast SCSI-2. «Широкий» (Wide SCSI-2) вариант магистрали, предусматривает наличие дополнительных 24 линий данных благодаря подключению второго 68-проводного кабеля (для приводов CD-ROM не применяется). Обычно скорость передачи данных по шине SCSI(-2) для приводов CD-ROM достигает от1.5-2 до 3-4 Мбайт/с.

Несмотря на стандартность интерфейса SCSI, проблема совместимости приводов с SCSI-адаптерами по-прежнему остается.

В случае реализации собственного интерфейса подключение других устройств, кроме привода CD-ROM, достаточно проблематично. Здесь следует отметить, что существует спецификация ASPI (Advanced SCSI Programming Interface), которую разработала фирма Adaptec - ведущий призводителеь адаптеров SCSI. ASPI определяет стандартный программный интерфейс для основного (host) адаптера SCSI. Программные модули ASPI достаточно легко стыкуются друг с другом. Основным программным модулем ASPI является ASPI-хост-менеджер. С ним связываются программы-фрайверы ASPI, например, для таких устройств, как приводы CD-ROM, флоптические и сменные жесткие диски, сканеры и т.д.

В том случае, если производитель SCSI-устройства поставляет ASPI-совместимый драйвер, то он совместим со всеми хост-адаптерами или интерфейсными картами Adaptec и большинства других производителей.

К сожалению, в ряде случаев производители приводов CD-ROM поставляют свою карту контроллера с собственным (несовместимым с ASPI) драйвером, называя интерфейс SCSI. Это следует иметь в виду, если вы хотите подключить к SCSI другие устройства.

Какой же из интерфейсов предпочтительней использовать в IBM PC-совместимых компьютерах для приводов CD-ROM? Хотя теоретически интерфейс SCSI может обеспечить скорость обмена несколько выше, нежели IDE, на практике все обстоит несколько сложнее. Не следует забывать, например, тот факт, что IDE-интерфейс использует в основном прграммный ввод-вывод, а SCSI-устройства в большенстве случаев - передачу данных по прямому доступу к памяти. В однопользовательсктх системах программный ввод-вывод часто оказывается гораздо эффективнее. Это особенно четко проявляется при использовании улучшенных алгоритмов кэширования. Преймущество SCSI-адаптеров неоспоримо в первую очередь в многозадачных и многопользовательских системах. Дело в том, что команды для SCSI-устройства могут быть построены в очередь, что освобождает процессор для выполнения других операций. Кроме того, если привод CD-ROM используется в локальной сети как коллективное устройство, альтернативы SCSI, пожалуй, пока нет.

С другой стороны, установка IDE-привода достаточно проста. В большенстве случаев справедлив принцип «включай и работай». Для нормальной работы в файлы конфигурации системы обычно не требуется добавлять никаких дополнительных программных драйверов.

Для SCSI-адаптера процесс установки более сложен. Во-первых, следует помнить о разделяемых системных ресурсах: портах ввода-вывода, прерываниях IRQ, каналах прямого доступа к памяти DMA, областях в верхней памяти UMB. Во-вторых, требуется верно определить SCSI ID для конкретного устройства, в-третьих, не следует забывать, сигнале четности (запретить или разрешить), установке терминаторов и т.д. Кроме того, файлы конфигурации обязательно должны быть дополнены соответствующими программными драйверами адаптера и устройств.

Что же касается стоимости, то SCSI-адаптера обычно в компьютере нет и его приходится покупать дополнительно.

ПОДКЛЮЧЕНИЕ ДИСКОВОДОВ CD-ROM

На сегодняшний день существует несколько способов подключения дисководов CD-ROM. Первый способ основан на том, что один канал интерфейса IDE может поддерживать два встроенных устройства. Накопитель CD-ROM подключают к плате ввода-вывода через интерфейс IDE вместе с жестким диском по принципу master/slave. Однако в этом случае снижается скорость обмена данными с жестким диском. Одним из способов решения этой проблемы является подключение устройств CD-ROM к различным каналам одного интерфейса EIDE или к двум различным котроллерам IDE. Если CD-ROM имеет SCSI интерфейс, то его соответственно подключают к SCSI контроллеру. Другим подходом является применение 32- битных драйверов дисководов CD-ROM вместо используемых в настоящее время 16- битных. Существует также возможность подключения дисководов CD-ROM через контроллер звуковой карты. Также не следует забывать, что современные материнские платы могут содержать встроенные контроллеры SCSI и IDE, что вообще исключает необходимость в дополнительной плате ввода-вывода для подключения дисководов CD-ROM.

ПОДКЛЮЧЕНИЕ АУДИОКАНАЛОВ

Практически каждый дисковод CD-ROM обладает встроенным цифро-аналоговым преобразователем (ЦАП), а также выходным разъемом для вывода стереофонических сигналов. На внешней панели дисководы CD-ROM (как внешние так и внутренние), кроме того, имеют разъем, для головных телефонов (наушников). Если на компакт-диске находится аудиоинформация, ЦАП преобразует ее в аналоговую форму и подает сигнал на разъем, предназначенный для головных телефонов, а так же на выходные аудио-разъемы дисковода, с которых в свою очередь, сигнал поступает на усилитель и акустическую систему непосредственно или через звуковую карту. Преимущество активного выхода заключается в том, что аудиосигнал с CD-ROM дополнительно обрабатывается звуковой картой.

Одной из основных, встречающихся при работе с аудиосигналами, проблем является физическая несовместимость аудио-разъемов для встраиваемого дисковода CD-ROM и звуковой карты. Как правило, и дисковод, и звуковая карта имеют аудио-разъемы с четырьмя выводами (два стереоканала и по одному заземляющему контакту для каждого из них). Назначение контактов обычно одинаково на обоих типах устройств, однако, проблема состоит в том, что эти разъемы могут иметь различные размеры. Еще одна неприятность связана с тем, что, если ЦАП конструктивно расположен внутри самого дисковода, это может негативно отразиться на качестве воспроизведения звука. В свою очередь физическое разделение дисковода CD-ROM и ЦАП, с которым он работает, позволяет избежать дополнительных шумов.

Список литературы

www.сайт - раздел “Энциклопедия персонального компьютера”

http://zstu.edu.ua/base/home/rpf/lib/periph/hole/Spr/cdrom.htm -

ЗГТУ, кафедра радиоэлектроники

Типичный привод CD-ROM состоит из печатной платы с электрони­кой, шпиндельного двигателя, считывающей системы с оптической го­ловкой, системы загрузки CD-диска и механизма перемещения рамы с механикой привода. На плате с электроникой размещены:

Все схемы управления работой привода;

Разъем интерфейса для подключения к компьютеру;

Аналоговый звуковой выход (Analog Audio);

Цифровой звуковой выход S/PDIF (Digital Audio - может отсутствовать в некоторых моделях).

Шпиндельный двигатель служит для вращения диска с постоянной линейной (CLV - Constant Linear Velocity) или угловой (CAV - Constant Angular Velocity) скоростью. Поддержка постоянной линейной скорости требует изменения угловой скорости диска в зависимости от положе­ния оптической головки.

На оси шпиндельного двигателя крепится подставка, к которой при­жимается нижняя сторона диска (при горизонтальной загрузке). На конце оси шпиндельного двигателя крепится намагниченный металли­ческий наконечник, имеющий конусообразную форму. С другой сторо­ны диска - верхней в случае горизонтальной загрузки, то есть над дис­ком, - размещается намагниченный маховик, который притягивает ме­таллический наконечник, в результате чего диск оказывается зажатым между подставкой и маховиком, что обеспечивает фиксацию диска по вертикали и хорошее сцепление диска с вращающейся подставкой во время работы привода.

Считывающая система состоит из оптической головки и механизма ее позиционирования. В головке размещены лазерный излучатель на основе инфракрасного лазерного светодиода с длиной волны от 770 до 830 нм (обычно - около 780 нм) и мощностью 0,2-0,5 мВт, система фокусировки лазерного пучка, фотоприемник и предварительный уси­литель. Система фокусировки представляет собой набор подвижных линз, приводимых в движение электромагнитной системой типа «voice coil» (звуковая катушка), сделанной по аналогии с подвижной систе­мой громкоговорителя. Изменение напряженности магнитного поля приводит к передвижению линз и перемещению точки фокусировки лазерного луча.

Благодаря малой инерционности такая система эффективно отсле­живает вертикальные биения диска даже при значительных скоростях вращения. Механизм позиционирования оптической головки имеет собственный двигатель, приводящий в движение каретку с оптической головкой при помощи зубчатой или червячной передачи.

Система загрузки диска бывает трех типов:

Caddy - с использованием специального футляра для диска, вставляемого в приемное отверстие привода;

Tray - с использованием выдвижного лотка, на который кла­дется диск;

В приводах типа Caddy и Slot-in диск может загружаться как гори­зонтально, так и вертикально - то есть при горизонтальном и, соответ­ственно, вертикальном монтаже привода.

После загрузки диск не касается никаких деталей дисковода, кроме подставки и маховика, после чего его уже можно раскручивать.

На передней панели привода обычно расположены:

Кнопка Eject для загрузки/выгрузки диска;

Индикатор обращения к диску Busy (в некоторых моделях -Disk On/Busy, индикатор сигнализирует не только об обращении к диску, но также о том, что в приводе находится диск);

Гнездо для подключения наушников с электронным или меха­ническим регулятором громкости.

Для считывания информации с диска используется полупроводни­ковый лазер, излучающий в инфракрасном диапазоне - длина волны составляет около 780 нм. Луч лазера, проходя через фокусирующую линзу, падает на отражающий слой. Отраженный луч регистрируется фотоприемником. По зарегистрированному сигналу определяется прохождение оптической головки над питами и промежутками диска, а также проверяется качество фокусировки пятна лазерного луча на поверх­ности диска и его ориентации по центру дорожки.

На выходе фотоприемника получается цифровой поток бит, который декодируется c удалением дополнительных нуле­вых бит. B результате этого получает­ся битовый поток, который представляет собой исходный поток дан­ных, кодированный по CIRC с добавленными субкодами. Поэтому далее производится отделение субкодовых каналов и CIRC-декодирование. На этапе CIRC-декодирования обнаруживается и ис­правляется большая часть ошибок, вызванных дефектами при штам­повке, неоднородностью материалов диска, царапинами на его по­верхности, нечетким определением лита/промежутка в фотоприемни­ке и т.д. Полученный поток бит представляет собой полезную инфор­мацию, хранящуюся на диске.

DVD-технология

Развитие компьютеров и вычислительных систем позволило начать активное применение мощных алгоритмов сжатия, позволяющих вместить на один диск не час с четвертью, а от 5 до 10 часов музыки практически без потери качества. Однако для видеоиндустрии размер одного диска оказался маловат даже при использовании сжатия, да и компьютерные приложения уже переросли воз­можности накопителей на CD-дисках. Решить все эти проблемы была призвана DVD-технология.

В соответствии с этим был принят единый стандарт, названный DVD, или Digital Video Disc (впоследствии приняли расшифровку Digital Versatile Disc - цифровой многоцелевой диск). Далее была опуб­ликована первая версия спецификации для DVD-ROM и DVD-Video и принята схема защиты цифровой копии от несанкциони­рованного тиражирования.

В настоящее время существуют стандарты для DVD-Video, DVD-ROM, DVD-Audio. Звуковое сопровождение на DVD поддерживается стандартами Mono, PCM Stereo, Dolby Surround (Prologic), Dolby Digital AC-3, THX, DTS. Звуковые стандарты Dolbv Digital AC-3, THX, DTS определяют шестиканальный звук, т.е. звуковое сопровождение по схеме: фронтальные колонки, центр, тыловые ко­лонки и саббуффер. Обычно для обозначения шестиканального звука используется аббревиатура «5.1», что означает использование основ­ных пяти источников звука и отдельно - низкочастотного блока - саббуффера. Dolby ProLogic и Doiby Digital АС-3 отличаются тем, что Dolby Digital АС-3 имеет шесть независимо записанных звуковых до­рожек, a Dolby ProLogic лишь специальным образом обрабатывает стереосигнал и является имитацией шестиканального звука.

Таким образом, звук на DVD-дисках записывается в самых различных форматах, все они воспроизводят несколько независимых каналов пространственного компрессированного звука, создавая тем самым реалистичную картину происходящего.

DVD-видео - это цифровое видео, сжатое по алгоритму MPEG-2 и записанное на DVD-диск. Формат - 25 кадров в секунду с разрешением 720 х 576 то­чек при глубине цвета 24-бит (PAL) или 30 кадров 720 х 480 х 24-бит (NTSC). В несжатом виде это поток 3О МБайт в секунду, а двухчасовой фильм будет занимать более 100 гигабайт.

DVD-диски имеют емкость от 4,7Gb до 17Gb в зависимости от типа. При этом меняется не плотность записи, а тип размещения информа­ции. Диски бывают односторонние однослойные, односторонние двух­слойные, двухсторонние однослойные и двухсторонние двухслойные. Кроме того, бывают комбинированные диски, у которых с одной стороны два слоя, а с другой - один.

Способ хранения информации на DVD-ROM практически такой же, как и у CD-ROM: вдоль металлической подложки по спирали располо­жены канавки, составляющие так называемые треки. Эти канавки не­сут в себе информацию, которая считывается лучом лазера, преобра­зовывая канавки в единички и нули. Сама отражающая подложка покрыта защитным слоем пластика, предохраняющего диск от повреж­дения.

Отличие DVD-диска от CD - плотность записанной информа­ции. Так, например, односторонний и одноуровневый DVD-диск хранит приблизительно 4,7 Гбайт информации (технология DVD-5), а обычный CD-диск - лишь 650 Мбайт. Был разра­ботан новый полупроводниковый лазерный излучатель, использующий для работы меньшую длину волны (650-635 нм), чем лазер дис­ковода CD-ROM (780 нм). После этого расстояние между треками ста­ло меньше, да и сами канавки на диске (хранители информации) значительно уменьшились в размерах.

Вслед за одноуровневыми дисками появились двухуровневые, вмещающие до 8,54 Гбайт информации. Здесь первый уровень нахо­дился под вторым, а считывание происходило путем фокусировки лу­ча лазера по уровням (технология DVD-9). По технологии DVD-10 счи­тывание происходит с двух сторон по одному уровню. Хранимый объ­ем достиг 9,4 Гбайт. Двухуровневый DVD-18 обеспечивает хранение 17,08 Гбайт. Чтение происходит с двух сторон, каждая из которых имеет два уровня.

Существенными являются такие характеристики привода, как Access Time (время доступа), CPU Utilization (загрузка центрального процессора), Transfer Rate Inside/Outside (внутренняя и внешняя ско­рость передачи данных).

Показатель Access Time (время доступа) отражает сумму среднего времени поиска, необходимую приводу DVD-ROM для позициониро­вания на нужный трек и среднего времени «запаздывания» (латентности), в течение которого диск подводится под нужный сектор для счи­тывания. Соответственно, чем ниже значение Access Time, тем лучше. Показатель CPU Utilization (загрузка CPU) говорит о том, насколько DVD-ROM использует ресурсы процессора.

Скорость передачи данных характеризуется двумя показателями: внутренней (Inside) и внешней (outside) скоростью. Внутренняя скорость передачи представляет со­бой передачу между DVD-диском и внутренним буфером DVD-ROM непосредственно.

Она определяется многими параметрами: качеством и плотностью записи, скоростью вращения и т. д. На эти параметры влияет конст­руктивная особенность привода. Внешняя же скорость передачи дан­ных полностью зависит от ис­пользуемого режима передачи.

Несмотря на большое разнообразие моделей винчестеров прин­цип их действия и основные конструктивные элементы одинаковы. На рисунке 5 показаны основные элементы конструкции накопите­ля на жестком диске:

  • магнитные диски;

  • головки чтения/записи;

  • механизм привода головок;

  • двигатель привода дисков;

  • печатная плата с электронной схемой управления.
Типовой накопитель состоит из герметичного корпуса (гермоблока) и платы электронного блока. В гермоблоке размещены все механические части, на плате - вся управляющая электроника. Внутри гермоблока установлен шпиндель с одним или несколь­кими магнитными дисками. Под ними расположен двигатель. Бли­же к разъемам, с левой или правой стороны от шпинделя нахо­дится поворотный позиционер магнитных головок. Позиционер соединен с печатной платой гибким ленточным кабелем (иногда одножильными проводами).

Гермоблок заполняется воздухом под давлением в одну атмос­феру. В крышках гермоблоков некоторых винчестеров имеется спе­циальное отверстие, заклеенное фильтрующей пленкой, которое служит для выравнивания давления внутри блока и снаружи, а также для поглощения пыли.

Рисунок 5 - Основные элементы конструкции накопителя на жестких дисках

Габаритные размеры винчестеров стандартизованы по парамет­ру, называемому формфактор (Form-Factor). Например, все HDD с формфактором 3,5" имеют стандартные размеры корпуса 41,6x101x146 мм.

Подложки магнитных дисков первых винчестеров из­готовлялись из алюминиевого сплава с добавлением магния. В со­временных моделях в качестве основного материала для дисковых пластин используется композиционный материал из стекла и ке­рамики с малым температурным коэффициентом расширения, что делает их менее восприимчивыми к изменениям температу­ры, более прочными. Магнитные диски выпускаются следующих размеров: 3,5"; 5,25"; 2,5"; 1,8".

Диски покрываются магнитным веществом - рабочим слоем. Он может быть либо оксидный, либо на основе тонких пленок.

Головки чтения/записи предусмотрены для каждой сто­роны диска. Когда накопитель выключен, головки касаются диска. При раскручивании дисков возрастает аэродинамическое давле­ние воздуха на головки, что приводит к их отрыву от рабочих поверхностей дисков. Чем ближе располагается головка к повер­хности диска, тем выше амплитуда воспроизводимого сигнала.

Механизм привода головок обеспечивает перемеще­ние головок от центра дисков к краям и фактически определяет надежность накопителя, его температурную стабильность и виб­рационную устойчивость. Все существующие механизмы привода головок делятся на два основных типа: с шаговым двигателем и подвижной катушкой.

Двигатель привода дисков приводит пакет дисков во вращение, скорость которого в зависимости от модели находится в пределах 3600 - 7200 об/мин (т.е. головки движутся с относи­тельной скоростью 60 - 80 км/ч). Скорость вращения дисков не­которых винчестеров достигает 15 000 об/мин. Жесткий диск вра­щается непрерывно даже тогда, когда не происходит обращения к нему, поэтому винчестер должен быть установлен только верти­кально или горизонтально.

Печатная плата с электронной схемой управ­ления и прочие узлы накопителя (лицевая панель, элементы конфигурации и монтажные детали) являются съемными. На пе­чатной плате монтируются электронные схемы управления двига­телем и приводом головок, схема для обмена данными с кон­троллером. Иногда контроллер устанавливается непосредственно на этой плате.

Вопросы для самоконтроля:


  1. Накопители на гибких дисках. Конструкция, принцип действия, основные компоненты, технические характеристики FDD;

  2. Логическая структура дискет;

  3. Накопители на жестких магнитных дисках. Конструкция и принцип работы HDD, форм-факторы, типы;

  4. Основные характеристики и режимы работы накопителей на жестких магнитных дисках. Контроллеры и подключение HDD;

  5. Современные модели накопителей;

  6. Логическая структура жесткого диска;

  7. Форматирование жестких дисков;

  8. Утилиты обслуживания жестких магнитных дисков.

Тема 4.2 Приводы CD-R (RW). DVD-R (RW)

Студент должен:

иметь представление:


  • о назначении приводов CD-R (RW). DVD-R (RW)

знать:


  • принцип действия и основные компоненты привода CD-ROM;

  • эксплуатационные характеристики привода CD-ROM;

  • принцип действия и основные компоненты привода DVD;

уметь:


  • подключать приводы CD и DVD дисков;

Приводы CD-R, (RW), DVD-R (RW): принцип работы, конструкция и основные компоненты, технические характеристики.

Методические указания

Приводы CD-ROM

CD-ROM - компакт-диск (CD), предназначенный для хране­ния в цифровом виде предварительно записанной на него инфор­мации и считывания ее с помощью специального устройства, называемого CD-ROM-driver, - дисковода для чтения компакт-дисков.

Процесс изготовления CD-дисков включает несколько этапов.

На первом этапе создается информационный файл для последу­ющей записи на носитель. На втором этапе с помощью лазерного луча производится запись информации на носитель, в качестве которого используется стеклопластиковый диск с покрытием из фоторезистивного материала. Информация записывается в виде последовательности расположенных по спирали углублений (штри­хов), как показано на рисунке 6. Глубина каждого штриха-пита (pit) равна 0,12 мкм, ширина (в направлении, перпендикулярном плос­кости рисунка) - 0,8 - 3,0 мкм. Они расположены вдоль спираль­ной дорожки, расстояние между соседними витками которой со­ставляет 1,6 мкм, что соответствует плотности 16000 витков/дюйм (625 витков/мм). Длина штрихов вдоль дорожки записи колеблет­ся от 0,83 до 3,1 мкм.

Рисунок 6 - Геометрические характеристики компакт-диска (а) и его поперечное сечение (б)

На следующем этапе производятся проявление фоторезистивного слоя и металлизация диска. Изготовленный по такой техно­логии диск называется мастер-диском. Для тиражирования ком­пакт-дисков с мастер-диска методом гальванопластики снимает­ся несколько рабочих копий. Рабочие копии покрываются более прочным металлическим слоем (например, никелем), чем мас­тер-диск, и могут использоваться в качестве матриц для тиражи­рования CD-дисков до 10 тыс. шт. с каждой матрицы. Тиражирова­ние осуществляется методом горячей штамповки, после которой информационную сторону основы диска, выполненную из поли­карбоната, подвергают вакуумной металлизации слоем алюминия и диск покрывают слоем лака. Диски, выполненные методом го­рячей штамповки, в соответствии с паспортными данными обес­печивают до 10 000 циклов безошибочного считывания данных. Толщина CD-диска 1,2 мм, диаметр - 120 мм.

Привод CD-ROM содержит следующие основные функциональ­ные узлы:


  • загрузочное устройство;

  • оптико-механический блок;

  • системы управления приводом и автоматического регулиро­вания;

  • универсальный декодер и интерфейсный блок.
На рисунке 7 дана конструкция оптико-механического блока при­вода CD-ROM, который работает следующим образом. Электро­механический привод приводит во вращение диск, помещенный в загрузочное устройство. Оптико-механический блок обеспечивает перемещение оптико-механической головки считывания порадиусу диска и считывание информации. Полупроводниковый лазер генерирует маломощный инфракрасный луч (типовая длина волны 780 нм, мощность излучения 0,2 - 5,0 мВт), который попадает на разделительную призму, отражается от зеркала и фокусируется линзой на поверхности диска. Серводвигатель по командам, по­ступающим от встроенного микропроцессора, перемещает под­вижную каретку с отражающим зеркалом к нужной дорожке на компакт-диске. Отраженный от диска луч фокусируется линзой, расположенной под диском, отражается от зеркала и попадает на разделительную призму, которая направляет луч на вторую фоку­сирующую линзу. Далее луч попадает на фотодатчик, преобразую­щий световую энергию в электрические импульсы. Сигналы с фо­тодатчика поступают на универсальный декодер.

Рисунок 9 - Конструкция оптико-механического блока привода CD-ROM

Системы автоматического слежения за поверхностью диска и дорожки записи данных обеспечивают высокую точность считы­вания информации. Сигнал с фотодатчика в виде последователь­ности импульсов поступает в усилитель системы автоматического регулирования, где выделяются сигналы ошибок слежения. Эти сигналы поступают в системы автоматического регулирования: фокуса, радиальной подачи, мощности излучения лазера, линей­ной скорости вращения диска.

Универсальный декодер представляет собой процессор для об­работки сигналов, считанных с CD. В его состав входят два декоде­ра, оперативное запоминающее устройство и контроллер управле­ния декодером. Применение двойного декодирования дает возмож­ность восстановить потерянную информацию объемом до 500 байт. Оперативное запоминающее устройство выполняет функцию бу­ферной памяти, а контроллер управляет режимами исправления ошибок.

Интерфейсный блок состоит из преобразователя цифровых дан­ных в аналоговые сигналы, фильтра нижних частот и интерфейса для связи с компьютером. При воспроизведении аудиоинформа­ции ЦАП преобразует закодированную информацию в аналого­вый сигнал, который поступает на усилитель с активным фильт­ром низких частот и далее на звуковую карту, которая связана с наушниками или акустическими колонками.

Ниже приводятся эксплуатационные характеристики, которые необходимо учитывать при выборе CD-ROM применительно к кон­кретным задачам.

Скорость передачи данных (Data Transfer Rate - DTK) - Максимальная скорость, с которой данные пересылаются от но­сителя информации в оперативную память компьютера. Высокая скорость передачи данных привода CD-ROM необхо­дима прежде всего для синхронизации изображения и звука. При недостаточной скорости передачи возможны пропуск кадров ви­деоизображения и искажение звука.

Качество считывания характеризуется коэффици­ентом ошибок (Eror Rate) и представляет собой вероятность получения искаженного информационного бита при его считыва­нии.

Среднее время доступа (Access Time - AT) - это вре­мя (в миллисекундах), которое требуется приводу, чтобы найти на носителе нужные данные.

Объем буферной памяти - это объем оперативного запоминающего устройства привода CD-ROM, используемого для увеличения скорости доступа к данным, записанным на носителе. Буферная память (кэш-память) представляет собой устанавливаемые на плате накопителя микросхемы памяти для хранения счи­танных данных.

Средняя наработка на отказ - среднее время в ча­сах, характеризующее безотказность работы привода CD-ROM.

В процессе развития накопителей на оптических дисках разра­ботан целый ряд основных форматов записи информации на CD.

Формат CD-DA (Digital Audio) - цифровой аудио-компакт диск со временем звучания 74 мин.

Формат ISO 9660 - наиболее распространенный стандарт ло­гической организации данных.

Формат High Sierra (HSG) предложен в 1995,г. и обеспечивает чтение данных, записанных на диск в формате ISO 9660, с помо­щью приводов всех типов, что привело к широкому тиражирова­нию программ на CD и способствовало созданию компакт-дис­ков, ориентированных на различные операционные системы.

Формат Photo-CD разработан в 1990- 1992 гг. и предназначен для записи на CD, хранения и воспроизведения статической ви­деоинформации в виде высококачественных фотоизображений. Диск формата Photo-CD вмещает от 100 до 800 фотоизображений соответствующих разрешений - 2048 х 3072 и 256 х 384, а также сохраняет звуковую информацию.

Любой диск CD-ROM, содержащий текст и графические дан­ные, аудио- или видеоинформацию, относится к категории муль­тимедиа. Мультимедиа CD существуют в различных форматах для различных операционных систем: DOS, Windows, OS/2, UNIX, Macintosh.

Формат CD-I (Jntractive) разработан для широкого круга пользо­вателей как стандарт мультимедийного диска, содержащего раз­личную текстовую, графическую, аудио- и видеоинформацию. Диск формата CD-I позволяет хранить видеоизображение со звуковым сопровождением (стерео) и длительностью воспроизведения до 20 мин.

Формат CD-DV(Digital Video) обеспечивает запись и хранение высококачественного видеоизображения со стереозвуком в течение 74 мин. При хранении обеспечивается сжатие по методу MPEG-1 (Motion Picture Expert Group).

Чтение диска возможно с использованием аппаратного или программного декодера стандарта MPEG.

Формат 3DO разработан для игровых приставок.

Приводы CD-ROM могут работать как со стандартным интер­фейсом для подключения к разъему IDE (E-IDE), так и с высо­коскоростным интерфейсом SCSI.

Самые популярные дисководы CD-ROM в России - изделия с торговыми марками Panasonic, Craetive, Samsung, Pioneer, Hitachi, Teac, LG.

Накопители DVD

Решение проблемы увеличения емкости оптических носителей информации на базе совершенствования технологии производ­ства CD и приводов, а также имеющихся научно-технических ре­шений в области высококачественного цифрового видео привело к созданию CD-дисков повышенной емкости.

Качество изображения, хранимого в формате DVD, соизмеримо с качеством профессиональных студийных видеозаписей, причем качество звука также не уступает студийному. Считывание звуко­вой информации в формате DVD производится со скоростью 384 Кбайт/с, что позволяет организовать многоканальное звуко­вое сопровождение.

Такие возможности дисков формата DVD обусловлены улуч­шенными параметрами рабочей поверхности дисков. Так же как и CD, диск формата DVD имеет диаметр 120 мм. В приводе DVD используется полу­проводниковый лазер с длиной волны излучения в видимой об­ласти 0,63 - 0,65 мкм. Такое снижение длины волны (по сравне­нию с 0,78 мкм у обычного CD-привода) обеспечило возмож­ность уменьшения размеров штрихов записи (пит) практически в два раза, а расстояние между дорожками записи - с 1,6 до 0,74 мкм. Питы располагаются по спирали, как на виниловых долгоигра­ющих пластинках.

Приводы DVD-ROM поставляются как с аппаратным декоде­ром MPEG-2 в виде карты расширения для шины PCI, так и с программным декодером. Записывающие DVD-R и перезаписы­вающие дисководы DVD-RW способны работать с однослойными односторонними дисками емкостью до 4,7 - 5,2 Гбайт при скоро­сти записи информации около 1 Мбайт/с.

Вопросы для самоконтроля:


  1. Приводы CD-R, (RW), принцип работы, конструкция и основные компоненты, технические характеристики;

  2. DVD-R (RW): принцип работы, конструкция и основные компоненты, технические характеристики.

Тема 4.3 Магнитооптические накопители. Накопители на магнитных дисках. Внешние устройства хранения информации

Студент должен:

иметь представление:


  • о назначении накопителей на компакт дисках;

  • о назначении магнитооптических накопителей;

  • о назначении накопителей на магнитных дисках;

  • о назначении внешних устройств хранения информации

знать:


  • форматы оптических и магнитооптических дисков;

  • принцип работы стримера

уметь:


  • записывать информацию на оптические и магнитооптические диски

Накопители на компакт – дисках: форматы записи информации, процесс изготовления CD – дисков, накопители с однократной и многократной записью. Магнитооптические накопители: принципы работы, конструкция и основные компоненты, технические характеристики. Логическая структура и формат магнитооптических дисков. Накопители на магнитных лентах. Принцип размещения информации на магнитных лентах. Конструкция лентопротяжных механизмов. Структура данных на магнитных лентах. Устройства записи считывания информации с магнитных лент. Катриджы с магнитными лентами. Современные модели стримеров. Внешние устройства хранения информации: флэш- накопители, ZIP-накопители. Принцип работы и основные технические характеристики.

Методические указания

Накопители на магнитооптических дисках

Магнитооптический (МО) привод представляет собой нако­питель информации, в основу которого положен магнитный но­ситель с оптическим (лазерным) управлением.

Технология изготовления магнитооптического диска состоит в следующем. На стеклопластиковую подложку наносится алюми­ниевое (либо золотое) покрытие, обеспечивающее отражение лазерного луча. Диэлектрические слои, окружающие с двух сто­рон магнитооптический слой, изготовлены из прозрачного поли­мера и защищают диск от перегрева, повышают чувствительность при записи и отражающую способность при считывании инфор­мации. Магнитооптический слой создается на основе порошка из сплава кобальта, железа и тербия. Свойства такого покрытия ме­няются как при температурном воздействии, так и при действии магнитного поля. Если нагреть диск свыше определенной темпе­ратуры, возможно изменение магнитной поляризации посредством небольшого магнитного поля. Верхний защитный слой из про­зрачного полимера, выполненный методом ультрафиолетового от­верждения, предохраняет рабочую поверхность от механических повреждений. Благодаря такой технологии и помещению в специ­альный пластиковый конверт - картридж, магнитооптические диски обладают повышенной надежностью и не боятся воздей­ствия неблагоприятных условий окружающей среды.

Запись данных на МО-диск производится с использованием лазерной технологии. Луч лазера, сфокусированный на поверх­ности магнитооптического слоя в пятно с диаметром около 1 мкм, направляется в магнитооптический слой и нагревает его в точке фокусировки до температуры точки Кюри (около 200 °С). При этой температуре резко падает магнитная проницаемость, и изменение магнитного состояния частиц выполняется относитель­но небольшим по величине магнитным полем магнитной головки. После охлаждения материала магнитная ориентация доменов в данной точке сохраняется. В зависимости от магнитной ориента­ции участка магнитного материала он интерпретируется как ло­гический нуль или логическая единица. Данные записываются бло­ками по 512 байт.

Для изменения части информации в блоке необходимо переза­писывать его полностью, поэтому при первом проходе инициали­зируется (разогревается) весь блок, а при подходе сектора под магнитную головку происходит запись новых данных.

Считывание данных с диска происходит поляризованным ла­зерным лучом пониженной мощности, которой недостаточно для разогрева рабочего слоя: мощность лазера при считывании состав­ляет 25 % мощности лазера при записи. Попадание луча на упорядоченно ориентированные при записи данных магнитные части­цы диска приводит к тому, что их магнитное поле незначительно изменяет поляризацию луча, т.е. наблюдается эффект Керра.

Стандартные емкости МО-дисков: односторонних дисков 3,5" - 128, 230 и 640 Мбайт, двухсторонних - 600 и 650 Мбайт. Диски размером 5,25" выпускаются емкостью от 1,7 до 4,6 Гбайт.

Быстродействие МО-накопителей ниже, чем накопителей со сменными магнитными носителями, хотя быстродействие новых моделей неуклонно возрастает. Одна из причин сравнительно низ­кого быстродействия МО-накопителей заключается в том, что скорость вращения диска всего 2000 об/мин. Кроме того, в МО-накопителях используется довольно массивная головка чтения/ записи, совмещающая в одном устройстве оптический и магнит­ный узлы.

Среднее время доступа к данным в МО-накопителях около 30 мс, а гарантийный срок работы (средняя наработка на отказ) - 75 000 ч.

Технология магнитооптической записи непрерывно совершен­ствуется. Несколько фирм выпускают МО-накопители с частотой вращения МО-диска 3600 об/мин, но их стоимость довольно вы­сока. Лидерами рынка накопителей на МО-дисках являются ком­пании Sony, Fujitsu и Hewlett-Packard.

Магнитооптические диски и накопители большинства фирм-изготовителей соответствуют требованиям международных стан­дартов, выпускаются как в виде встраиваемых устройств, так и во внешнем автономном исполнении с интерфейсами IDE и SCSI.

Помимо обычных дисководов широкое распространение полу­чили так называемые оптические библиотеки с автоматической сменой дисков, емкость которых достигает сотен гигабайт и даже нескольких терабайт. Время автоматической смены диска - не­сколько секунд, а время доступа и скорость обмена данными - такие же, как у обычных дисководов.

Накопители на магнитной ленте

Накопители на магнитной ленте применяются в системах ре­зервного копирования. Резервное копирование данных необходимо, если емкость используемого накопителя на жестких дисках невелика и при этом на нем хранится много программ; результа­ты работы представлены большими массивами данных; отсутствует свободное место на жестком диске.

В качестве устройств записи данных на магнитную ленту (стри­меров) сначала использовались катушечные накопители, анало­гичные бытовым катушечным магнитофонам. В 1972 г. фирма ЗМ разработала первую кассету размером 15x10x1,6 см, предназна­ченную для хранения данных. Внутри кассеты находились две ка­тушки, на которые лентопротяжным механизмом наматывалась лента в процессе чтения/записи. В 1983 г. был выпущен первый стандартный QIC (Quarter-Inch-Catridge - накопитель на магнит­ной ленте), емкость которого составляла 60 Мбайт. Запись данных производилась на девяти дорожках, а магнитная лента имела дли­ну около 90 м. В дальнейшем был разработан стандарт на мини-кассеты (формат МС). Габариты мини-кассеты, согласно этому стандарту, 8,25 х 6,35 х 1,5 см. Основу магнитного слоя лент QIC составляет оксид железа.

Внешние устройства хранения информации

При современных объемах программного обеспечения и раз­мерах файлов носитель информации на гибких дисках емкостью всего 1,44 Мбайт не в состоянии обеспечить обмен данными меж­ду PC и тем более не может использоваться для хранения резерв­ных копий и архивов.

Решение этой проблемы связано с созданием таких накопите­лей, как LS-120, SyQuest, Zip, Jaz, МО, ORB и др. Важнейшим параметром оценки этих устройств является совместимость с FDD, т.е. способность устройства читать и записывать данные на гибкий диск 3,5" емкостью 1,44 Мбайт. Все перечисленные устройства не­совместимы с FDD, поскольку работают только со своими дис­ками. Исключение составляет дисковод LS-120, который в состо­янии читать кроме своих дискет емкостью 120 Мбайт стандартные дискеты емкостью 1,44 Мбайт.

Дисководы LS-120 выпускаются фирмами как внешние уст­ройства с интерфейсом LPT или внутренние с интерфейсом IDE. Несомненным преимуществом дисковода LS-120 является высо­кая емкость дискеты (120 Мбайт) при достаточно низкой цене накопителя с интерфейсом IDE. При этом скорость чтения/запи­си в несколько раз выше, чем у FDD (80- 100 Кбайт/с в DOS и 200 - 300 Кбайт/с в Windows по сравнению с 60 Кбайт/с у FDD). Дисководы LS-120 являются магнитными накопителями инфор­мации и имеют такие же недостатки, как и все магнитные носи­тели информации: чувствительность к магнитным полям, пыли и механическим деформациям.

Сменные жесткие диски используются при необходимости раз­мещения больших объемов данных на малогабаритных носителях. У сменного винчестера переносным является не только носитель информации, но и весь дисковод, который вынимается из своих направляющих в корпусе ПК. Чаще всего это IDE диски, которые устанавливаются в корпус компьютера. Для извлечения дисковода на передней панели имеется специальная ручка. С обратной его стороны находится адаптер, который обычно обеспечивает сило­вое питание и связь для приема/передачи данных. Использование сменного жесткого диска такого рода для частого обмена инфор­мацией между удаленными ПК не дает желаемых результатов в связи с недостаточной защищенностью от внешних воздействий, возникающих при их транспортировке. Рекомендуется использо­вать сменные жесткие диски главным образом для целей архиви­рования данных.

Вопросы для самоконтроля:


  1. Накопители на компакт – дисках: форматы записи информации, процесс изготовления CD – дисков, накопители с однократной и многократной записью.

  2. Магнитооптические накопители: принципы работы, конструкция и основные компоненты, технические характеристики.

  3. Логическая структура и формат магнитооптических дисков.

  4. Накопители на магнитных лентах.

  5. Принцип размещения информации на магнитных лентах. Конструкция лентопротяжных механизмов. Структура данных на магнитных лентах.

  6. Устройства записи считывания информации с магнитных лент. Катриджы с магнитными лентами. Современные модели стримеров.

  7. Внешние устройства хранения информации: флэш- накопители, ZIP-накопители. Принцип работы и основные технические характеристики.

Раздел 5. Видеоподсистема: мониторы, видеоадаптеры, видеопроекторы

Тема 5.1 Мониторы ЭЛТ

Студент должен:

иметь представление:


знать:


  • принцип работы мониторов на основе ЭЛТ;

  • основные характеристики ЭЛТ мониторов.

уметь:


  • подключать мониторы на основе ЭЛТ;

  • устанавливать режимы работы мониторов на основе ЭЛТ;

Мониторы на основе электронно- лучевой трубки (ЭЛТ): основные принципы работы, типы ЭЛТ, конструкция, технические характеристики. Стандарты ТСО. Обзор основных моделей.

Методические указания

Мониторы на основе ЭЛТ - наиболее распространенные уст­ройства отображения информации. Используемая в этом типе мо­ниторов технология была разработана много лет назад и первона­чально создавалась в качестве специального инструментария для измерения переменного тока, т. е. для осциллографа.

Конструкция ЭЛТ-монитора представляет собой стеклянную трубку, внутри которой находится вакуум. С фронтальной сторо­ны внутренняя часть стекла трубки покрыта люминофором. В ка­честве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и др. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами. Для создания изображения в ЭЛТ-мониторе используется электронная пушка, которая испускает поток электронов сквозь металлическую маску или решетку на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точ­ками. Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т.е. поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение на мониторе. Как правило, в цветном ЭЛТ-мониторе используются три электронные пушки, в отличие от одной пушки, применяемой в монохромных мони­торах.

На пути пучка электронов обычно находятся дополнительные электроды: модулятор, регулирующий интенсивность пучка элек­тронов и связанную с ней яркость изображения; фокусирующий электрод, определяющий размер светового пятна; размещенные на основании ЭЛТ катушки отклоняющей системы, которые из­меняют направление пучка. Любое текстовое или графическое изоб­ражение на экране монитора состоит из множества дискретных точек люминофора, называемых пикселами и представляющих со­бой минимальный элемент изображения-растра.

Формирование растра в мониторе производится с помощью специальных сигналов, поступающих на отклоняющую систему. Под действием этих сигналов производится сканирование луча по поверхности экрана по зигзагообразной траектории от левого верх­него угла до правого нижнего. Ход луча по горизонтали осуществляется сигналом строчной (горизонталь­ной) развертки, а по вертикали - кадровой (вертикальной) раз­вертки. Перевод луча из крайней правой точки строки в крайнюю левую точку следующей строки (обратный ход луча по горизонта­ли) и из крайней правой позиции последней строки экрана в крайнюю левую позицию первой строки (обратный ход луча по вертикали) производится посредством специальных сигналов об­ратного хода. Мониторы такого типа называются растровыми. Элек­тронный луч в этом случае периодически сканирует экран, обра­зуя на нем близко расположенные строки развертки. По мере дви­жения луча по строкам видеосигнал, подаваемый на модулятор, изменяет яркость светового пятна и образует видимое на экране изображение. Разрешающая способность монитора определяется числом элементов изображения, которые он способен воспро­изводить по горизонтали и вер­тикали, например, 640x480 или 1024 х 768 пикселов.

В электронно-лучевой трубке цветного монитора расположены три электронные пушки с независимыми схемами управления, а на внутреннюю поверхность экрана нанесен люминофор трех основных цветов: красного, синего и зеленого.

Электронный луч каждой пушки возбуждает точки лю­минофора, и они начинают светиться. Точки светятся по-разному и представляют собой мозаичное изображение с чрезвычайно ма­лыми размерами каждого элемента. Интенсивность свечения каж­дой точки зависит от управляющего сигнала электронной пушки. В человеческом глазу точки с тремя основными цветами пересека­ются и накладываются друг на друга. Изменением соотношения интенсивностей точек трех основных цветов получают требуемый оттенок на экране монитора. Для того чтобы каждая пушка на­правляла поток электронов только на пятна люминофора соот­ветствующего цвета, в каждом цветном кинескопе имеется спе­циальная цветоделительная маска.

В зависимости от расположения электронных пушек и конст­рукции цветоделительной маски (рисунок 8) различают ЭЛТ четы­рех типов, используемые в современных мониторах:

ЭЛТ с теневой маской (Shadow Mask) (см. рисунок 8, а) наибо­лее распространены в большинстве мониторов, производимых LG, Samsung, Viewsonic, Hitachi, Belinea, Panasonic, Daewoo, Nokia;

ЭЛТ с улучшенной теневой маской (EDP - Enhenced Dot Pitch) (см. рисунок 8, 6);

ЭЛТ со щелевой маской (Slot Mask) (см. рисунок 8, в), в которой люминофорные элементы расположены в вертикальных ячейках, а маска сделана из вертикальных линий. Вертикальные полосы разделены на ячейки, содержащие группы из трех люминофорных элементов трех основных цветов. Этот тип маски применяется фирмами NEC и Panasonic;

ЭЛТ с апертурной решеткой из вертикальных линий (Aperture Grill) (см. рисунок 8, г). Вместо точек с люминофорными элемента­ми трех основных цветов апертурная решетка содержит серию нитей, состоящих из люминофорных элементов, выстроенных в виде вертикальных полос трех основных цветов. По этой техноло­гии производятся трубки Sony и Mitsubishi.

Рисунок 8 - Типы цветоделительных масок ЭЛТ: а – ЭЛТ с теневой маской; б – ЭЛТ с улучшенной теневой маской; в- ЭЛТ с щелевой маской; г – ЭЛТ с апертурой решеткой

ЭЛТ-мониторы имеют следующие основные характеристики.

Диагональ экрана монитора - расстояние между левым нижним и правым верхним углом экрана, измеряемое в дюймах.

Размер зерна экрана определяет расстояние между ближайши­ми отверстиями в цветоделительной маске используемого типа. Расстояние между отверстиями маски измеряется в миллиметрах. Чем меньше расстояние между отверстиями в теневой маске и чем больше этих отверстий, тем выше качество изображения.

Разрешающая способность монитора определяется количеством элементов изображения, которые он способен воспроизводить по горизонтали и вертикали.

Тип электронно-лучевой трубки следует принимать во внимание при выборе монитора. Наиболее предпочтительны такие типы кинескопов, как Black Trinitron, Black Matrix или Black Planar. Мо­ниторы этих типов имеют особое люминофорное покрытие.

Потребляемая мощность монитора указывается в его техниче­ских характеристиках. У мониторов 14" потребляемая мощность не должна превышать 60 Вт.

Покрытия экрана необходимы для придания ему антибликовых и антистатических свойств. Антибликовое покрытие позво­ляет наблюдать на экране монитора только изображение, форми­руемое компьютером, и не утомлять глаза наблюдением отражен­ных объектов. Существует несколько способов получения анти­бликовой (не отражающей) поверхности. Самый дешевый из них - протравливание. Оно придает поверхности шероховатость. Однако графика на таком экране выглядит нерезко, качество изображе­ния низкое. Наиболее популярен способ нанесения кварцевого покрытия, рассеивающего падающий свет; этот способ реализо­ван фирмами Hitachi и Samsung. Антистатическое покры­тие необходимо для предотвращения прилипания к экрану пыли вследствие накопления статического электричества.

Защитный экран (фильтр) должен быть непременным атрибу­том ЭЛТ-монитора, поскольку медицинские исследования пока­зали, что излучение, содержащее лучи в широком диапазоне (рент­геновское, инфракрасное и радиоизлучение), а также электро­статические поля, сопровождающие работу монитора, могут весьма отрицательно сказываться на здоровье человека.

По технологии изготовления защитные фильтры бывают: се­точные, пленочные и стеклянные.

Безопасность монитора для человека регламентируется стан­дартами ТСО: ТСО 92, ТСО 95, ТСО 99, предложенными Швед­ской конфедерацией профсоюзов. ТСО 92, выпущенный в 1992 г., определяет параметры электромагнитного излучения, дает опре­деленную гарантию противопожарной безопасности, обеспечива­ет электрическую безопасность и определяет параметры энерго­сбережения. В 1995 г. стандарт существенно расширили (ТСО 95), включив в него требования к эргономике мониторов. В ТСО 99 требования к мониторам еще более ужесточили. В частности, ста­ли жестче требования к излучениям, эргономике, энергосбере­жению, пожаробезопасности. Присутствуют здесь и экологические требования, которые ограничивают наличие в деталях монитора различных опасных веществ и элементов, например тяжелых ме­таллов.

Вопросы для самоконтроля:


  1. Принцип работы мониторов на основе ЭЛТ;

  2. Основные характеристики ЭЛТ мониторов.

  3. Подключение монитора на основе ЭЛТ;

  4. Установка режимов работы мониторов на основе ЭЛТ

Тема 5.2 Жидкокристаллические мониторы

Студент должен:

иметь представление:


  • об устройствах отображения информации

знать:


  • принцип работы жидкокристаллических мониторов;

  • основные характеристики жидкокристаллических мониторов.

уметь:


  • подключать мониторы на основе ЖК;

  • устанавливать режимы работы жидкокристаллических мониторов.

Жидкокристаллические мониторы. Принцип действия и технологии ЖК- мониторов. Контроллер ЖК экрана. Технические характеристики ЖК мониторов. Сравнительный анализ ЖК мониторов и мониторов на основе ЭЛТ. Обзор основных моделей. Плоскопанельные мониторы: плазменные дисплеи, электролюминесцентные мониторы, мониторы электростатической эмиссии, органические светодиодные мониторы. Принцип действия, основные преимущества и недостатки.

Методические указания

ЖК-мониторы (LCD - Liquid Crystal Display) составляют ос­новную долю рынка плоскопанельных мониторов с экраном раз­мером 13-17". Первое свое применение жидкие кристаллы на­шли в дисплеях для калькуляторов и в кварцевых часах, затем их стали использовать в мониторах для портативных компьютеров. Сегодня в результате прогресса в этой области начинают полу­чать все большее распространение LCD-мониторы для настоль­ных компьютеров.

Основным элементом ЖК-монитора является ЖК-экран, со­стоящий из двух панелей, выполненных из стекла, между кото­рыми размещен слой жидкокристаллического вещества, которое находится в жидком состоянии, но при этом обладает некоторы­ми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью ориентации моле­кул. Молекулы жидких кристаллов под воздействием электриче­ства могут изменять свою ориентацию и вследствие этого изме­нять свойства светового луча, проходящего сквозь них. Следова­тельно, формирование изображения в ЖК-мониторах основано на взаимосвязи между изменением электрического напряжения, приложенного к жидкокристаллическому веществу, и изменени­ем ориентации его молекул.

Экран ЖК-монитора представляет собой массив отдельных ячеек (называемых пикселами), оптические свойства которых могут меняться при отображении информации. Панели ЖК-монитора имеют несколько слоев, среди которых ключевую роль играют две панели, выполненные из свободного от натрия и очень чистого стеклянного материала, между которыми и расположен тонкий слой жидких кристаллов. На панелях нанесены параллельные бо­роздки, вдоль которых ориентируются кристаллы. Панели распо­ложены так, что бороздки на подложках перпендикулярны между собой. Технология получения бороздок состоит в нанесении на стеклянную поверхность тонких пленок из прозрачного пластика. Соприкасаясь с бороздками, молекулы в жидких кристаллах ори­ентируются одинаково во всех ячейках.

Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристалличе­ские панели работают на отражение или на прохождение света). В качестве источников света используются специальные элект­ролюминесцентные лампы с холодным катодом, характеризую­щиеся низким энергопотреблением. Молекулы одной из разно­видностей жидких кристаллов (нематиков) в отсутствие напря­жения на подложках поворачивают вектор электрической напря­женности электромагнитного поля в световой волне, проходящей через ячейку, на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок позволяет обес­печить одинаковые углы поворота для всех ячеек. Фактически каж­дая ЖК-ячейка представляет собой электронно управляемый све­тофильтр, принцип действия которого основан на эффекте поля­ризации световой волны.

Чтобы поворот плоскости поляризации светового луча был за­метен для глаза, на стеклянные панели дополнительно наносят два слоя, представляющих собой поляризационные фильтры. Эти фильтры выполняют функции поляризатора и анализатора.

Принцип действия ячейки ЖК-монитора в следую­щем. При отсутствии напряжения между подложками ячейка ЖК-монитора прозрачна, поскольку вследствие перпендикулярного расположения бороздок на подложках и соответствующего закру­чивания оптических осей жидких кристаллов вектор поляризации света поворачивается и проходит без изменения через систему поляризатор -анализатор. Ячейки, у которых ориентирующие канавки, обеспечивающие соответствующее закру­чивание молекул жидкокристаллического вещества, расположе­ны под углом 90°, называются твистированными нематическими. При создании между подложками напряжения 3- 10 В молекулы жидкокристаллического вещества располагаются параллельно си­ловым линиям поля. Твистированная структура жидкокристаллического вещества нарушается, и поворота плос­кости поляризации проходящего через него света не происходит. В результате плоскость поляризации света не совпадает с плоско­стью поляризации анализатора, и ЖК-ячейка оказывается непро­зрачной. Напряжение, приложенное к каждой ЖК-ячейке, фор­мируется ПК.

Для вывода цветного изображения на экран выполняется под­светка монитора сзади, так чтобы свет порождался в задней части ЖК-дисплея. Цвет формируется в результате объединения ЖК-ячеек в триады, каждая из которых снабжена светофильтром, про­пускающим один из трех основных цветов.

Технология, при которой закручивание молекул составляет 90°, называется твистированной нематической (TN - Twisted Nematic). Недостатки ЖК-мониторов, реализующих эту технологию, свя­заны с низким быстродействием; зависимостью качества изобра­жения (яркости, контрастности) от внешних засветок; значитель­ным взаимным влиянием ячеек; ограниченным утлом зрения, под которым изображение хорошо видно, а также низкими яркостью и насыщенностью изображения.

Следующим этапом на пути совершенствования ЖК-монито­ров было увеличение угла закручивания молекул ЖК-вещества с 90 до 270° с помощью STN-технологии (Super-Twisted Nematic). Использование двух ячеек, одновременно поворачивающих плос­кости поляризации в противоположных направлениях, согласно DSTN-технологии (Dual Super-Twisted Nematic), позволило значи­тельно улучшить характеристики ЖК-мониторов.

Для повышения быстродействия ЖК-ячеек используется тех­нология двойного сканирования (DSS- Dual Scan Screens), когда весь ЖК-экран разбивается на четные и нечетные строки, обнов­ление которых выполняется одновременно. Двойное сканирова­ние совместно с использованием более подвижных молекул по­зволило снизить время реакции ЖК-ячейки с 500 мс (у ЖК-мо­ниторов, реализующих технологию TN) до 150 мс и значительно повысить частоту обновления экрана.

Для получения лучших результатов с точки зрения стабильно­сти, качества, разрешения и яркости изображения используются мониторы с активной матрицей в отличие от применявшихся ра­нее с пассивной матрицей. Термин пассивная матрица (Passive Matrix) относится к такому конструктивному решению монитора, согласно которому монитор разделен на отдельные ячейки, каждая из которых функционирует независимо от осталь­ных, так что в результате каждый такой элемент может быть под­свечен индивидуально для создания изображения. Матрица назы­вается пассивной, потому что рассмотренные выше технологии создания ЖК-мониторов не могут обеспечить быстродействие при отображении информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляюще­го напряжения на отдельные ячейки. Вследствие большой элект­рической емкости отдельных ячеек напряжение на них не может изменяться достаточно быстро, поэтому изображение не отобра­жается плавно и дрожит на экране. При этом между соседними электродами возникает некоторое взаимное влияние, которое может проявляться в виде колец на экране.

В активной матрице используются отдельные усилитель­ные элементы для каждой ячейки экрана, компенсирующие вли­яние емкости ячеек и позволяющие значительно увеличить быст­родействие. Активная матрица (active matrix) имеет следующие преимуще­ства по сравнению с пассивной матрицей:


  • высокая яркость;

  • угол обзора, достигающий 120-160°, в то время как у мони­торов с пассивной матрицей качественное изображение можно наблюдать только с фронтальной позиции по отношению к экрану;

  • высокое быстродействие, обусловленное временем реакции монитора около 50 мс.
Функциональные возможности ЖК-мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея. В случае с пассивной мат­рицей разные электроды получают электрический заряд цикли­ческим методом при построчной регенерации дисплея, а в ре­зультате разряда емкостей элементов изображение исчезает, так как кристаллы возвращаются к своей изначальной конфигурации. В случае с активной матрицей к каждому электроду добавлен за­поминающий транзистор, который может хранить цифровую ин­формацию (двоичные значения 0 или 1), и в результате изобра­жение сохраняется до тех пор, пока не поступит другой сигнал. Такой транзистор, выполняя роль своеобразного коммутирующе­го ключа, позволяет коммутировать более высокое (до десятков вольт) напряжение, используя сигнал низкого уровня (около 0,7 В). Благодаря применению активных ЖК-ячеек стало возможным значительно снизить уровень сигнала управления и тем самым решить проблему частичной засветки соседних ячеек.

Запоминающие транзисторы производятся из прозрачных ма­териалов, что позволяет световому лучу проходить сквозь них, и располагаются на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Поскольку запоминающие транзисторы выполняются по тонкопленочной технологии, по­добные ЖК-мониторы получили название TFT-мониторы (Thin Film Transistor - тонкопленочный транзистор). Тонкопленочный транзистор имеет толщину в диапазоне от 0,1 до 0,01 мкм. Техно­логия TFT была разработана специалистами фирмы Toshiba. Она позволила не только значительно улучшить показатели ЖК-мо­ниторов (яркость, контрастность, угол зрения), но и создать на основе активной ЖК-матрицы цветной монитор.

К основным характеристикам жидкокристаллических монито­ров относятся следующие.

Размер экрана ЖК-мониторов находится в пределах от 13 до 16". В отличие от ЭЛТ-мониторов, номинальный размер экрана и раз­мер его видимой области (растра) практически совпадают.

Ориентация экрана у ЖК-монитора в отличие от ЭЛТ-монито­ра может быть как портретная, так и ландшафтная. В то время как традиционные экраны ЭЛТ-мониторов и ЖК-экраны компьюте- ров типа Notebook имеют только ландшафтную ориентацию, обус­ловленную тем, что поле зрения человека в горизонтальном на­правлении шире, чем в вертикальном, в ряде случаев (работа с текстами большого объема, Web-страницами) намного удобнее работать с экраном портретной ориентации. ЖК-монитор можно легко развернуть на 90°, при этом ориентация изображения оста­нется прежней.

Поле обзора ЖК-мониторов обычно характеризуется углами обзор а, отсчитываемыми от перпендикуляра к плоскости экра­на по горизонтали и вертикали.

Разрешение ЖК-монитора определяется размером отдельной ЖК-ячейки, т.е. фиксированным размером пикселов.

Метод «Centering» (центрирование) состоит в том, что для отображения изображения используется только то количество пикселов, которое необходимо для формирования изображения с более низким разрешением. В результате изображение получает­ся не во весь экран, а только в середине: все неиспользуемые пикселы остаются черными, образуя вокруг изображения широ­кую черную рамку.

Метод «Expansion» (растяжение) основан на растяжении изоб­ражения на весь экран, что приводит к возникновению некото­рых искажений и ухудшению резкости.

Яркость - важнейший параметр при выборе ЖК-монитора. Ти­повая яркость ЖК-монитора 150 - 200 кд/м 2 . При этом в центре яркость ЖК-монитора может быть на 25 % выше, чем у краев эк­рана.

Контрастность изображения ЖК-монитора показывает, во сколько раз его яркость изменяется при изменении уровня видео­сигнала от минимального до максимального. Приемлемая цвето­передача обеспечивается при контрастности не менее 130:1, а высококачественная - при 350:1.

Инерционность ЖК-монитора характеризуется минимальным временем, необходимым для активизации его ячейки, и состав­ляет 30 - 70 мс, соответствуя аналогичным параметрам ЭЛТ-мо-ниторов.

Палитра ЖК-мониторов, по сравнению с обычными, ограни­чена определенным количеством воспроизводимых на экране от­тенков цветов. Типовой размер палитры современных ЖК-мони­торов составляет 262 144 или 16 777 216 оттенков цветов.

Массогабаритные характеристики и энергопотребление выгодно отличают ЖК-мониторы от ЭЛТ-мониторов. Масса большинства моделей не превышает нескольких килограмм, а толщина экрана - 20 мм. Потребляемая мощность в рабочем режиме не превышает 35-40 Вт.

Плазменные дисплеи (Plasma Display Panel - PDF) создаются путем заполнения пространства между двумя стеклянными по­верхностями инертным газом, например аргоном или неоном. За­тем на стеклянную поверхность наносят миниатюрные прозрач­ные электроды, на которые подается высокочастотное напряже­ние. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора в диапазоне, видимом человеком.

Электролюминесцентные мониторы (Electric Luminiescent Displays - ELD) no своей конструкции аналогичны ЖК-мониторам. Прин­цип действия электролюминесцентных мониторов основан на яв­лении испускании света при возникновении туннельного эффек­та в полупроводниковом p-n- переходе. Такие мониторы имеют высокие частоты развертки и яркость свечения, кроме того, они надежны в работе. Однако они уступают ЖК-мониторам по энер­гопотреблению, поскольку на ячейки подается относительно вы­сокое напряжение - около 100 В. При ярком освещении цвета электролюминесцентных мониторов тускнеют.

Мониторы электростатической эмиссии (Field Emission Displays - FED) являются сочетанием традиционной технологии, основанной на использовании ЭЛТ, и жидкокристаллической техноло­гии. Мониторы FED основаны на процессе, который несколько похож на тот, что применяется в ЭЛТ-мониторах, так как в обо­их методах применяется люминофор, светящийся под воздействием электронного луча. В качестве пикселов применяются такие же зерна люминофора, как и в ЭЛТ-мониторе, что позволяет получить чистые и сочные цвета, свойственные обычным мониторам. Однако активизация этих зерен производится не электронным лучом, а элек­тронными ключами, подобными тем, что используются в ЖК-мо­ниторах, построенных по TFT-технологии. Управление этими клю­чами осуществляется специальной схемой, принцип действия ко­торой аналогичен принципу действия контроллера ЖК-монитора.

Органические светодиодные мониторы (Organic Light-Emitting Diode Displays - OLEDs), или LEP-мониторы {Light Emission Plastics - светоизлучающий пластик), по своей технологии похожи на ЖК-и ELD-мониторы, но отличаются материалом, из которого изго­тавливается экран: в LEP-мониторах используется специальный органический полимер (пластик), обладающий свойством полу­проводимости. При пропускании электрического тока такой мате­риал начинает светиться.

Основные преимущества технологии LEP по сравнению с рас­смотренными:


  • низкое энергопотребление (подводимое к пикселу напряжение менее 3 В);

  • простота конструкции и технологии изготовления;

  • тонкий (около 2 мм) экран;

  • малая инерционность (менее 1 мкс).
К существенным недостаткам этой технологии следует отнести малую яркость свечения экрана; малый размер экрана. LEP-мони­торы используются пока только в портативных устройствах, на­пример, в сотовых телефонах.

Выбор той или иной модели монитора зависит от характера информации, с которой будет работать пользователь, и задач, которые он ставит перед собой, а также от суммы выделенных средств на приобретение монитора. Российский рынок мониторов Постоянно пополняется новыми моделями. Если модель уже вы­брана, при выборе конкретного экземпляра полезно следовать Приведенным ниже рекомендациям.

Вопросы для самоконтроля:


  1. Принцип работы жидкокристаллических мониторов;

  2. Основные характеристики жидкокристаллических мониторов;

  3. Подключение мониторов на основе ЖК;

  4. Установка режимов работы жидкокристаллических мониторов;

  5. Принцип работы плазменных дисплеев;

  6. Принцип работы электролюминесцентных мониторов;

  7. Принцип работы мониторов электростатической эмиссии;

  8. Принцип работы органических светодиодных мониторов.

Тема 5.3 Проекционные аппараты

Студент должен:

иметь представление:


  • об устройствах отображения информации

знать:




Проекционные аппараты. Оверхед- проекторы и ЖК панели. Мультимедийные проекторы: принцип действия и классификация. Принципиальные схемы TFT- проекторов, полисиликоновых проекторов, D-ILA, DMD/DLP- проекторов. Их достоинства и недостатки. Принцип действия 3D- проекторов. Основные характеристики мультимедийных проекторов.

Методические указания

Проекционный аппарат (проектор) (от латинского projicio - бросаю вперед) - оптико-механический прибор для проециро­вания на экран увеличенных изображений различных объектов.

Принцип действия проекционных аппаратов заключается в проецировании с помощью оптической системы на экран изоб­ражения объекта, нанесенного на тонкой полупрозрачной плен­ке, при освещении его мощной проекционной лампой. В результа­те изображение может быть показано большой аудитории.

Современные проекционные аппараты служат для демонстра­ции прозрачных объектов: диапозитивов (кодопроекторы), диа­фильмов (диапроекторы), непрозрачных (эпипроекторы), а так­же тех и других (эпидиапроекторы). Проекционные аппараты при­меняются для презентаций, в качестве технических средств обуче­ния. Поскольку в настоящее время весомая часть информации на­ходится в электронном виде, возникла необходимость проециро­вания на экран изображения с экрана монитора.

Конструкции и принципы действия модуляторов отличаются большим разнообразием, хотя в основном они построены на базе ЖК-панелей. Все компьютерные проекторы можно разбить на две группы:

универсальные проекторы (оверхед-проекторы) об­щего назначения; в качестве источника изображения в них ис­пользуется специальный внешний модулятор - ЖК-панель;

мультимедийные проекторы со встроенным моду­лятором.

На компьютерный проектор подается RGB-сигнал, снимаемый с выхода видеоадаптера ПК, а также обычный видеосигнал, ис­точником которого может быть бытовая или полупрофессиональ­ная видеоаппаратура. Проекторы, в которых в качестве входного используется только видеосигнал, называются видеопроекторами.

Оверхед-проектор (Over Head Projector - проектор, располо­женный над головой) - проекционный аппарат, в котором изоб­ражение от источника проецируется на экран при помощи на­клонного проекционного зеркала. Конструктивно в зависимости от места размещения проекционной лампы оверхед-проекторы разделяются на отражательные и просветные.

Отражательные проекторы представляют собой ма­логабаритные устройства, предназначенные для проецирования изображений, нанесенных на специальную прозрачную пленку. Отражательные проекторы не могут использоваться совместно с ЖК-панелями, поскольку мощность проекционной лампы у них невелика.

Просветные проекторы отличаются тем, что у них проекционная лампа размещается под рабочей поверхностью устройства внутри его основания, мощность лампы уве­личена в десятки раз и имеется ее принудительное охлаждение с помощью вентилятора, как показано на оптической схем. Это позволяет использовать в качестве источника изображения не только прозрачные пленки, но и менее про­зрачные ЖК-панели.

ЖК-панель, подключенную к видеоадаптеру ПК, устанавли­вают на прозрачную рабочую поверхность проектора как про­зрачную пленку. Световой поток от проекционной лампы через специальную фокусирующую линзу освещает ЖК-панель и, про­ходя через нее и рассеивающую линзу, поступает на проекцион­ное зеркало.

По конструкции и габаритам ЖК-панель напоминает дисплей ПК типа Notebook, причем на ее корпусе расположены органы управления параметрами изображения.

Качество изображения, формируемого оверхед-проектором, подключаемым к компьютеру, определяется характеристиками ЖК-панели, которые аналогичны характеристикам плоскопанель­ных ЖК-мониторов: размер, максимальное разрешение, количе­ство воспроизводимых оттенков цветов, яркость. В зависимости от разрешения экрана различают ЖК-панели следующих типов с соответствующим максимальным разрешением экрана: VGA-па­нели (640x480); SVGA-панели (800 х 600); XGA-панели (1024x768); SXGA-панели (1280х 1024).

В VGA-панелях, рассчитанных на небольшую аудиторию, в качестве экрана используется пассивная ЖК-матрица, основан­ная на применении технологии DSTN; в более качественных па­нелях используется активный TFT-экран.

В мультимедийном проекторе проекционная лампа, ЖК-матрица и оптическая система конструктивно размещаются в одном корпусе, что делает их похожими на диапроекторы, предназна­ченные для просмотра слайдов или диафильмов. По принципу действия мультимедийный проектор не отличается от оверхед-проектора: изображение создается с помощью мощной проекци­онной лампы и встроенного в проектор электронно-оптического модулятора, управляемого сигналом видеоадаптера ПК, а затем посредством оптической системы проецируется на внешний эк­ран. Основным отличием в мультимедийных проекторах является конструкция модулятора и способы построения и переноса изоб­ражения на экран. В зависимости от конструкции модулятора про­екторы бывают следующих типов: TFT-проекторы; полисилико­новые проекторы и DMD/DLP-проекторы.

В зависимости от способа освещения модулятора мультимедий­ные проекторы подразделяют на проекторы просветного и отражательного типов.

В TFT-проекторах, относящихся к проекторам просветного типа, в качестве модулятора используется малогабаритная цветная ак­тивная ЖК-матрица, выполненная по технологии TFT.

Основным элементом установки является миниатюрная ЖК-матрица, выполненная по технологии TFT, как и ЖК-экран плос­копанельного цветного монитора. Равномерное освещение поверх­ности ЖК-матрицы достигается за счет применения системы линз, называемой конденсором.

Полисиликоновые мультимедийные проекторы также относятся к проекторам просветного типа и применяются в том случае, когда необходимо получить более яркое изображение. В них используется не одна цветная TFT-матрица, а три монохромных миниатюр­ных ЖК-матрицы размером около 1,3". Каждая из матриц форми­рует монохромное изображение красного, зеленого или синего цвета. Оптическая система проектора, обеспечивает совмещение трех монохромных изображений, в ре­зультате чего формируется цветное изображение. Такая техноло­гия получила название полисиликоновой (p-Si). Каждый элемент полисиликоновой матрицы содержит только один тон­копленочный транзистор, поэтому его размер меньше, чем раз­мер элемента TFT-матрицы, что позволяет повысить четкость изображения.

Цветоделительная система полисиликонового проектора, со­стоящая из двух дихроичных (D u D 2) и одного обычного (Ni) зеркал, используется для разложения белого света проекционной лампы на три составляющие основных цветов (красный, зеленый, синий). Цветоделение необходимо выполнить для того, чтобы по­дать на каждую из трех монохромных матриц световой поток соот­ветствующего цвета. Дихроичное (цветоделительное) зеркало пропус­кает свет только одной длины волны (один цвет) и представляет собой хорошо отполированную стеклянную подложку с нанесен­ной на него тонкой пленкой из диэлектрического материала.

Система цветосмешения полисиликонового проектора состоит из двух дихроичных (D 3 , D 4) и одного отражающего (N 2) зеркал и служит для получения цветного изображения путем наложения одного на другой трех монохромных изображений, создаваемых соответствующими ЖК-матрицами.

Полисиликоновые проекторы обеспечивают более высокое ка­чество изображения, яркость и насыщенность цветов по сравнению с проекторами на основе TFT-матриц. Они более надежны в работе и долговечны, поскольку три ЖК-матрицы работают в менее напряженном тепловом режиме, чем одна. Благодаря этому поли­силиконовые проекторы можно использовать при проецировании изображения на большой экран в таких помещениях, как конфе­ренц-залы, кинотеатры.

ЖК-проекторы отражательного типа предназначены для рабо­ты в больших аудиториях и отличаются по принципу действия: модуляции подвергается не проходящий, а отраженный световой поток.

В настоящее время наиболее используемой в конструкциях ЖК-проекторов отражательного типа является технология DMD/DLP, разработанная фирмой Texas Instruments.

В DMD/DLP-проекторах отражательного типа излучение ис­точника света модулируется изображением при отражении от мат­рицы. В DMD/DLP-проекторах в качестве отражающей поверхно­сти используется матрица, состоящая из множества электронно-управляемых микрозеркал, размер каждого из которых около 1 мкм. Каждое микрозеркало имеет возможность отражать падающий на него свет либо в объектив, либо в поглотитель, что определяется уровнем поданного на него электрического сигнала. При попада­нии света в объектив образуется яркий пиксел экрана, а в поглоти­тель - темный. Такие матрицы обозначаются аббревиатурой DMD (Digital Micromirror Device - цифровой микрозеркальный прибор), а технология, на которой основан их принцип действия, - DLP (Digital Light Processing - цифровая обработка света).

Для получения цветного изображения используются проекто­ры двух вариантов: с тремя или одной DMD-матрицей.

В одноматричных DMD/DLP-проекторах полный цветной кадр формируется в результате последовательного наложения трех бы­стро меняющихся монохромных кадров: черно-красного, черно-зеленого и черно-синего. Смена монохромных кадров на экране незаметна благодаря инерционности человеческого зрения. Мо­нохромные кадры образуются при последовательном освещении DMD-матрицы лучом красного, зеленого и синего цветов. Луч каждого цвета образуется за счет пропускания светового потока от проекционной лампы через вращающийся диск с красным, зеленым и синим светофильтрами. Управление микрозеркалами синхронизировано с поворотом светофильтра.

По сравнению с ЖК-технологиями технология DLP обладает следующими преимуществами: практически полным отсутствием зернистости изображения, высокой яркостью и равномерностью ее распределения. К недостаткам одноматричных DMD-проекторов следует отнести заметное мелькание кадров.

Вопросы для самоконтроля:


  1. Проекционные аппараты;

  2. Оверхед- проекторы и ЖК панели;

  3. Мультимедийные проекторы: принцип действия и классификация;

  4. Принципиальные схемы TFT- проекторов;

  5. Принципиальные схемы полисиликоновых проекторов;

  6. Принципиальные схемы D-ILA, DMD/DLP- проекторов. Их достоинства и недостатки;

  7. Принцип действия 3D- проекторов;

  8. Основные характеристики мультимедийных проекторов.

Практическая работа 6. Проекционные аппараты

Студент должен:

иметь представление:


  • об устройствах отображения информации

знать:


  • назначение, типы, функции проекционных аппаратов;

  • назначение и принцип работы оверхед- проектора и ЖК панели;

  • назначение и принцип работы мультимедийного проектора.

уметь:


  • подключать проекционные аппараты;

  • настраивать проекционные аппараты;

  • работать с проекционными аппаратами.

Тема 5.4 Устройства формирования объемных изображений

Студент должен:

иметь представление:


  • об устройствах отображения информации

знать:


  • назначение, виды устройств формирования объемных изображений

Устройства формирования объемных изображений: назначение, принцип действия стереоскопа, способы селекции. VR-шлемы. 3D- очки. 3D мониторы. 3D- проекторы

Методические указания

Устройства формирования объемных (трехмерных) изображе­ний появились в качестве весьма дорогостоящих и недостаточно совершенных элементов системы виртуальной реальности. Одна­ко в настоящее время эти устройства интенсивно совершенству­ются, постепенно превращаясь в непременный атрибут домашне­го мультимедийного ПК, поскольку объемный характер изобра­жения имеет важнейшее значение для создания у пользователя подсознательного ощущения реальности наблюдаемой сцены.

По своей конструкции такие устройства принципиально отли­чаются от традиционных мониторов, поскольку в их основе ле­жит способ формирования трехмерных изображений, основанный на эффекте бинокулярного зрения, или стереозрения.

Шлемы виртуальной реальности (VR-шлемы)

Шлемы виртуальной реальности (VR-шлемы), называемые так­же кибершлемами, являются в настоящее время наиболее совер­шенными устройствами формирования трехмерных изображений. Помимо наличия двух индивидуальных экранов для каждого глаза VR-шлемы, благодаря своей конструкции, обеспечивают отсече­ние поля периферийного зрения человека, что усиливает эффект проникновения в виртуальный компьютерный мир.

В VR-шлемах используются миниатюрные экраны, выполнен­ные на основе активных ЖК-матриц. Каждая из ЖК-матриц фор­мирует цветное изображение, которое, благодаря особой конст­рукции шлема, видит только один глаз. Помимо экранов VR-шлем снабжен стереофоническими головными телефонами и микрофо­ном. Узел шлема, объединяющий в себе эти матрицы и органы регулировки, называют в и з о р о м. Визор дает возможность ре­гулировать расстояние между матрицами по горизонтали, кото­рое должно соответствовать расстоянию между зрачками пользо­вателя, называемому IPD (Inter Pupil Distance). Визоры некоторых моделей шлемов оборудованы специальной оптической системой автоматического определения IPD, исключающей необходимость в индивидуальной настройке шлема.

Основным недостатком VR-шлема является недостаточно высо­кое разрешение стереоскопического изображения. Это обусловлено ограниченным количеством элементов ЖК-матрицы и малым рас­стоянием между глазом и визором, что делает зернистость ЖК-матриц заметной.

Важнейшей особенностью VR-шлемов является наличие так называемой системы виртуальной ориентации (СВО) (Virtual Orientation System - VOS), которая отслеживает движение голо­вы и в соответствии с ним корректирует изображение на экра­нах. В случае поворота головы в одну сторону панорамное изобра­жение «прокручивается» через ЖК-матрицы в противоположном направлении. В результате у пользователя возникает иллюзия ста­бильности наблюдаемой картины, ощущение реальности изобра­жения. В зависимости от принципа действия и типа используемого поля различают магнитные, ультразвуковые и инерциальные СВО. Магнитные СВО распространены наиболее широко. В них ис­пользуются миниатюрные магнитные датчики (катушки индук­тивности). Магнитная СВО включает в себя блок внешних непо­движных передатчиков, выполняющих роль радиомаяков; датчик-приемник, расположенный на шлеме; системный электронный блок, который формирует электрические сигналы, поступающие на передатчик, и обрабатывает сигналы, принятые приемником. Интенсивность и фаза принятых сигналов зависят от расстояния между передающими и приемными катушками, а также от их вза­имной ориентации. Обрабатывая передаваемые и принимаемые сигналы, системный электронный блок вычисляет пространствен­ные координаты приемника относительно передатчика. Результа­ты вычислений передаются в PC через стандартный последова­тельный интерфейс RS-232 с частотой 50 - 60 Гц.

В ультразвуковых СВО вместо магнитных используются мало­габаритные пьезокерамические преобразователи, выполняющие функции передатчиков и приемников. Обычно используются три передатчика и приемника, размещенные в шлеме. Системный блок посылает на передатчики электрический сигнал и регистрирует ультразвуковой сигнал. Измеряя временную задержку между по­сланным и принятым сигналом, а также зная скорость распрост­ранения звуковой волны (около 330 м/с), можно достаточно точ­но определить расстояние между передатчиком и приемником. Путем обработки результатов измерений расстояния между тремя парами датчиков рассчитывают положение и ориентацию шлема (головы пользователя) в пространстве.

Инерциальные СВО используются в VR-шлемах моделей, пред­назначенных в основном для профессионального применения. Свое название они получили благодаря использованию в них инерци-альных датчиков - гироскопов и акселерометров, не требующих для своей работы магнитных или ультразвуковых полей. С их по­мощью создается независимая инерциальная система координат, в которой отслеживается положение головы пользователя.

В качестве входного сигнала для VR-шлема может использо­ваться либо видеосигнал от бытовой видеоаппаратуры, либо RGB-сигнал видеоадаптера ПК. VR-шлемы с визорами, способными обеспечить разрешение не хуже 640 х 480, обычно рассчитаны на подключение непосредственно к видеоадаптеру ПК.

Помимо визора VR-шлем оборудован высококачественной сте­реофонической аудиосистемой. Источником звука может быть либо телевизор (видеомагнитофон), либо звуковая карта компью­тера.

3 D -очки являются наиболее распространенными и доступными по цене устройствами формирования трехмерных изображений. Принцип их действия основан на использовании затворного ме­тода разделения элементов стереопары. ЗD-очки используются в качестве дополнения к обычному монитору и могут подсоеди­няться к видеоадаптеру ПК при помощи гибкого провода длиной 2-3 м.

Принцип действия ЗD-очков заключается в том, что при по­следовательном отображении на мониторе левой и правой час­тей стереопары синхронно меняется прозрачность стекол оч­ков. В результате каждый глаз видит только свою часть стереопа­ры, что обеспечивает стереоэффект. Чтобы стекла ЗD-очков мог­ ли «терять прозрачность» по командам компьютера, их выпол­няют по технологии ЖК-ячейки просветного типа, использую­щей эффект поляризации. Поэтому 3D-очков иногда называют поляризационными. Поскольку прозрачность стекол 3D-очков изменяется синхронно со сменой изображения на экране вслед­ствие управления сигналами видеоадаптера, их называют ак­тивными.

Таким образом, термины «активные поляризационные очки», «3D-очки» - синонимы; они обозначают устройства, работаю­щие на одинаковом принципе.

Между ЗD-очками и шлемами виртуальной реальности есть принципиальные различия:

3D-очки изображения не создают, хотя также содержат ЖК-линзы, которые используются в качестве электронно-управляе­мого фильтра (затвора), поэтому качество формируемого изобра­жения определяется монитором;

3D-очки лишены системы виртуальной ориентации, поэтому изображение на экране монитора никак не корректируется в зави­симости от положения головы наблюдателя. В связи с этим при использовании ЗD-очков нет смысла перекрывать зону периферий­ного зрения, поэтому они выполняются в форме обычных очков. Подключение 3 D -очков к ПК производится в большинстве слу­чаев с помощью дополнительного устройства - контроллера, ко­торый формирует синхросигнал для 3D-очков, управляющий по­очередным затемнением стекол, и преобразует (при необходимо­сти) выходной видеосигнал и синхросигналы видеоадаптера та­ким образом, чтобы обеспечить раздельный последовательный показ элементов стереопары на экране монитора.

В большинстве моделей 3D-очков контроллер выполняется в виде отдельного внешнего блока, хотя в настоящее время появи­лось много видеоадаптеров с интегрированными контроллерами для 3D-очков.

Современный рынок 3D-очков достаточно разнообразен. Пре­имущественно используются беспроводные модели, обеспечива­ющие связь с ПК с помощью инфракрасного передатчика, ана­логичного телевизионному пульту управления.

ТЕМА 3.3 Накопители на компакт – дисках

Существуют следующие носители на компакт-дисках (оптические):

¾ CD-ROM - устройство только для считывания информации

¾ CD-R – для считывания и однократной записи

¾ CD-RW – для считывания и многократной записи

¾ Магнитооптические накопители

Приводы: CD-R, CD-RW, CD-ROM, DVD-R, DVD-RW

Принцип действия всех оптических накопителей информации основан на лазерной технологии: луч лазера используется как для считывания так и для записи информации. Приводы CD-ROM.

Носители информации на диске CD-ROM является рельефная подложка. Запись информации представляет собой процесс формирование рельефа на подложке путем прожигания миниатюрных штрихов лазерным лучом. Считывание производится насчет регистрации отражения луча лазера. Сигнал от штриха 1, от поверхности без штриха 0.

Приводы CD-ROM

· Загрузочное устройство

· Оптико-механический блок

· Системы управления приводом и автономного регулирования

· Универсальный декодер

· Интерфейсный блок

Электромеханический привод приводит во вращение диск, помещенный в загрузочное устройство. Полупроводниковый лазер генерирует маломощный инфракрасный луч, который попадает на разделительную призму, отражается от зеркала и фокусируется на поверхности диска. К нужной дорожке луч перемещается следующим образом: сперва двигатель по ком от встроенного микропроцессора перемещает подвижную каретку с отражающим зеркалом и нужной дорожке. Отраженный луч фокусируется линзой, отражается от зеркала, попадает на разделительную призму, и направляет луч на вторую фокусируемую линзу, далее луч попадает на фотодатчик, преобразует световую энергию в электрические импульсы. Сигналы с фотодатчика поступают на универсальный декодер, который и необходим для преобразования импульсов в понятную компьютеру цифровую информацию, представляет собой процессор.

Система автономного слежения за поверхностью диска и дорожки записи данных обеспечивают высокую точность считывания информации. Сигнал с фотодатчика в виде импульсов поступает в систему автономного регулирования, где выделяются сигналы ошибок слежения. Эти сигналы с усилителя поступают в систему автономного регулирования: фокуса, системы автономного регулирования мощности излучаемого лазера, скорость вращения диска, радиальной подачи, мощность излучения лазера, линейной скорости вращения диска.

Накопители DVD

DVD-диски конструктивно выполняется односторонними и двусторонними.

В отличие от CD в DVD дисках расстояние между дорожками записи меньше и уменьшены размеры штрихов записи. В результате чего увеличена емкость. Количество изображений хранимых в формате DVD соизмеримо с качеством профессиональных студийных видеозаписей, а качество звука не уступает студийному.



Накопители с однократной и многократной записью

Для однократной записи используются диски CD-R, представляющие собой диск, регистрационный слой которого выполнен из материала темнеющего при нагревании. Темные и светлые участки CD-R аналогичны штрихам и ровным поверхностям CD-ROM.

CD-RW- перезаписываемые диски, регистрирующий слой которого выполнен из органических соединений, способных изменять свое фазовое состояние с аморфного на кристаллическое под воздействием лазерного луча.

При нагревании лазерным лучом выше некоторой критической температуры, материал регистрирующего слоя переходит в аморфное состояние и остается в нем после остывания. При нагревании до температуры значительно ниже критической восстанавливает свое первоначальное состояние (кристаллическое).

Лазерный луч Лазерный луч


Отражающий слой Регистрирующий слой


CD-ROM Защитный лаковый слой

Раздел 4. УСТРОЙСТВА ОТОБРАЖЕНИЯ ИНФОРМАЦИИ

Накопители на компакт-дисках

Для решения широкого круга задач информатизации используются следующие оптические накопители информации:

CD-ROM (Compact Disk Read-Only Memory) - запоминающие устройства только для считывания с них информации;

CD-WORM (Write Once Read Many) - запоминающие устройства для считывания и однократной записи информации;

CD-R (CD-Recordable) - запоминающие устройства для считывания и многократной записи информации;

МО - магнитооптические накопители, на которые возможна многократная запись.

Принцип действия всех оптических накопителей информации основан на лазерной технологии. Луч лазера используется как для записи на носитель информации, так и для считывания ранее записанных данных, и является, по сути, дела своеобразным носителем информации.

Приводы CD-ROM

CD-ROM - компакт-диск (CD), предназначенный для хранения в цифровом виде предварительно записанной на него информации и считывания ее с помощью специального устройства, называемого CD-ROM-driver, - дисковода для чтения компакт-дисков.

К числу задач, для решения которых предназначается устройство CD-ROM, можно отнести: установку и обновление программного обеспечения; поиск информации в базах данных; запуск и работу с игровыми и образовательными программами; просмотр видеофильмов; прослушивание музыкальных CD.

История создания CD-ROM начинается с 1980 г., когда фирмы Sony и Philips объединили свои усилия по созданию технологии записи и производства компакт-дисков с использованием лазеров. Начиная с 1994 г., дисководы CD-ROM становятся неотъемлемой частью стандартной конфигурации ПК. Носителем информации на CD-диске является рельефная подложка, на которую нанесен тонкий слой отражающего свет материала, как правило, алюминия. Запись информации на компакт-диск представляет собой процесс формирования рельефа на подложке путем «прожигания» миниатюрных штрихов-питов лазерным лучом. Считывание информации производится за счет регистрации луча лазера, отраженного от рельефа подложки. Отражающий участок поверхности диска дает сигнал «нуль», а сигнал от штриха - «единицу».

Хранение данных на CD-дисках, как и на магнитных дисках, организуется в двоичной форме.

По сравнению с винчестерами CD значительно надежнее в транспортировке. Объем данных, располагаемых на CD, достигает 700 - 800 Мбайт, причем при соблюдении правил эксплуатации CD практически не изнашивается.

Процесс изготовления CD-дисков включает несколько этапов. На первом этапе создается информационный файл для последующей записи на носитель. На втором этапе с помощью лазерного луча производится запись информации на носитель, в качестве которого используется стеклопластиковый диск с покрытием из фоторезистивного материала. Информация записывается в виде последовательности расположенных по спирали углублений (штрихов), как показано на рис. 3.7. Глубина каждого штриха-пита (pit) равна 0,12 мкм, ширина (в направлении, перпендикулярном плоскости рисунка) - 0,8 - 3,0 мкм. Они расположены вдоль спиральной дорожки, расстояние между соседними витками которой составляет 1,6 мкм, что соответствует плотности 16000 витков/дюйм (625 витков/мм). Длина штрихов вдоль дорожки записи колеблется от 0,83 до 3,1 мкм.


На следующем этапе производятся проявление фоторезисторного слоя и металлизация диска. Изготовленный по такой технологии диск называется мастер-диском. Для тиражирования компакт-дисков с мастер-диска методом гальванопластики снимается несколько рабочих копий. Рабочие копии покрываются более прочным металлическим слоем (например, никелем), чем мастер-диск, и могут использоваться в качестве матриц для тиражирования CD-дисков до 10 тыс. шт. с каждой матрицы. Тиражирование осуществляется методом горячей штамповки, после которой информационную сторону основы диска, выполненную из поликарбоната, подвергают вакуумной металлизации слоем алюминия и диск покрывают слоем лака. Диски, выполненные методом горячей штамповки, в соответствии с паспортными данными обеспечивают до 10000 циклов безошибочного считывания данных. Толщина CD-диска 1,2 мм, диаметр - 120 мм.

Привод CD-ROM содержит следующие основные функциональные узлы:

Загрузочное устройство;

Оптико-механический блок;

Системы управления приводом и автоматического регулирования;

Универсальный декодер и интерфейсный блок.

На рис. 3.8 дана конструкция оптико-механического блока привода CD-ROM, который работает следующим образом. Электромеханический привод приводит во вращение диск, помещенный в загрузочное устройство. Оптико-механический блок обеспечивает перемещение оптико-механической головки считывания по радиусу диска и считывание информации. Полупроводниковый лазер генерирует маломощный инфракрасный луч (типовая длина волны 780 нм, мощность излучения 0,2 - 5,0 мВт), который попадает на разделительную призму, отражается от зеркала и фокусируется линзой на поверхности диска. Серводвигатель по командам, поступающим от встроенного микропроцессора, перемещает подвижную каретку с отражающим зеркалом к нужной дорожке на компакт-диске. Отраженный от диска луч фокусируется линзой, расположенной под диском, отражается от зеркала и попадает на разделительную призму, которая направляет луч на вторую фокусирующую линзу. Далее луч попадает на фотодатчик, преобразующий световую энергию в электрические импульсы. Сигналы с фотодатчика поступают на универсальный декодер

Системы автоматического слежения за поверхностью диска и дорожки записи данных обеспечивают высокую точность считывания информации. Сигнал с фотодатчика в виде последовательности импульсов поступает в усилитель системы автоматического регулирования, где выделяются сигналы ошибок слежения. Эти сигналы поступают в системы автоматического регулирования: фокуса, радиальной подачи, мощности излучения лазера, линейной скорости вращения диска.

Универсальный декодер представляет собой процессор для обработки сигналов, считанных с CD. В его состав входят два декодера, оперативное запоминающее устройство и контроллер управления декодером. Применение двойного декодирования дает возможность восстановить потерянную информацию объемом до 500 байт. Оперативное запоминающее устройство выполняет функцию буферной памяти, а контроллер управляет режимами исправления ошибок.

Интерфейсный блок состоит из преобразователя цифровых данных в аналоговые сигналы, фильтра нижних частот и интерфейса для связи с компьютером. При воспроизведении аудиоинформации ЦАП преобразует закодированную информацию в аналоговый сигнал, который поступает на усилитель с активным фильтром низких частот и далее на звуковую карту, которая связана с наушниками или акустическими колонками.

Ниже приводятся эксплуатационные характеристики, которые необходимо учитывать при выборе CD-ROM применительно к конкретным задачам.

Скорость передачи данных (Data Transfer Rate - DTR) - максимальная скорость, с которой данные пересылаются от носителя информации в оперативную память компьютера. Это наиболее важная характеристика привода CD-ROM, которая практически всегда упоминается вместе с названием модели. Непосредственно со скоростью передачи данных связана скорость вращения диска. Первые приводы CD-ROM передавали данные со скоростью 150 Кбайт/с, как и проигрыватели аудиокомпакт-дисков. Скорость передачи данных следующих поколений устройств, как правило, кратна этому числу (150 Кбайт/с). Такие приводы получили название накопителей с двух-, трех-, четырехкратной скоростью и т.д. Например, 60-скоростной привод CD-ROM обеспечивает считывание информации со скоростью 9000 Кбайт/с.

Высокая скорость передачи данных привода CD-ROM необходима прежде всего для синхронизации изображения и звука. При недостаточной скорости передачи возможны пропуск кадров видеоизображения и искажение звука.

Однако дальнейшее, свыше 72-кратности, повышение скорости считывания приводов CD-ROM нецелесообразно, поскольку при дальнейшем повышении скорости вращения CD не обеспечивается требуемый уровень качества считывания. И, кроме того, появилась более перспективная технология - DVD.

Качество считывания характеризуется коэффициентом ошибок (Eror Rate) и представляет собой вероятность получения искаженного информационного бита при его считывании. Данный параметр отражает способность устройства CD-ROM корректировать ошибки чтения/записи. Паспортные значения этого коэффициента - 10~11-10~12. Когда считываются данные с загрязненного или поцарапанного участка диска, регистрируются группы ошибочных битов. Если ошибку не удается устранить с помощью помехоустойчивого кода (применяемого при чтении/записи), скорость считывания данных понижается и происходит многократный повтор чтения.

Среднее время доступа (Access Time - АТ) - это время (в миллисекундах), которое требуется приводу, чтобы найти на носителе нужные данные. Очевидно, что при работе на внутренних участках диска время доступа будет меньше, чем при считывании информации с внешних участков. Поэтому в паспорте накопителя приводится среднее время доступа, определяемое как среднее значение при выполнении нескольких считываний данных с различных участков диска. По мере совершенствования приводов CD-ROM среднее время доступа уменьшается, но тем не менее этот параметр значительно отличается от аналогичного для накопителей на жестких дисках (100 - 200 мс для CD-ROM и 7 - 9 мс для жестких дисков). Это объясняется принципиальными различиями конструкций: в накопителях на жестких дисках используется несколько магнитных головок и диапазон их механического перемещения меньше, чем диапазон перемещения оптической головки привода CD-ROM.

Объем буферной памяти - это объем оперативного запоминающего устройства привода CD-ROM, используемого для увеличения скорости доступа к данным, записанным на носителе. Буферная память (кэш-память) представляет собой устанавливаемые на плате накопителя микросхемы памяти для хранения считанных данных. Благодаря буферной памяти, данные, размещенные в различных областях диска, могут передаваться в компьютер с постоянной скоростью. Объем буферной памяти отдельных моделей привода CD-ROM - 512 Кбайт.

Средняя наработка на отказ - среднее время в часах, характеризующее безотказность работы привода CD-ROM. Средняя наработка на отказ различных моделей приводов CD-ROM 50-125 тыс. ч, или 6-14,5 лет круглосуточной работы, что значительно превышает срок морального старения накопителя.

В процессе развития накопителей на оптических дисках разработан целый ряд основных форматов записи информации на CD.

š Формат CD-DA (Digital Audio) - цифровой аудио-компакт диск со временем звучания 74 мин.

š Формат ISO 9660 - наиболее распространенный стандарт логической организации данных.

š Формат High Sierra (HSG) предложен в 1995 г. и обеспечивает чтение данных, записанных на диск в формате ISO 9660, с помощью приводов всех типов, что привело к широкому тиражированию программ на CD и способствовало созданию компакт-дисков, ориентированных на различные операционные системы.

š Формат Photo-CD разработан в 1990- 1992 гг. и предназначен для записи на CD, хранения и воспроизведения статической видеоинформации в виде высококачественных фотоизображений. Диск формата Photo-CD вмещает от 100 до 800 фотоизображений соответствующих разрешений - 2048x3072 и 256^384, а также сохраняет звуковую информацию.

Любой диск CD-ROM, содержащий текст и графические данные, аудио- или видеоинформацию, относится к категории мультимедиа. Мультимедиа CD существуют в различных форматах для различных операционных систем: DOS, Windows, OS/2, UNIX, Macintosh.

š Формат CD-I (Intractive) разработан для широкого круга пользователей как стандарт мультимедийного диска, содержащего различную текстовую, графическую, аудио- и видеоинформацию. Диск формата CD-I позволяет хранить видеоизображение со звуковым сопровождением (стерео) и длительностью воспроизведения до 20 мин.

š Формат CD-DV(Digital Video) обеспечивает запись и хранение. высококачественного видеоизображения со стереозвуком в течение 74 мин. При хранении обеспечивается сжатие по методу MPEG-1 (Motion Picture Expert Group).

Чтение диска возможно с использованием аппаратного или программного декодера стандарта MPEG.

Формат 3DО разработан для игровых приставок.

Приводы CD-ROM могут работать как со стандартным интерфейсом для подключения к разъему IDE (E-IDE), так и с высокоскоростным интерфейсом SCSI.

Самые популярные дисководы CD-ROM в России - изделия с торговыми марками Panasonic, Craetive, Samsung, Pioneer, Hitachi, Teac, LG.