Безопасность

Нейронная сеть и размытая логика. Нечеткая логика — математические основы. Нечёткая логика и нейронные сети

В основе нечеткой логики лежит теория нечетких множеств, изложенная в серии работ Л. Заде в 1965-1973 годах. Математическая теория нечетких множеств (fuzzy sets) и нечеткая логика (fuzzy logic) являются обобщениями классической теории множеств и классической формальной логики. Основной причиной появления новой теории стало наличие нечетких и приближенных рассуждений при описании человеком процессов, систем, объектов.

Л. Заде, формулируя это главное свойство нечетких множеств, базировался на трудах предшественников. В начале 1920-х годов польский математик Лукашевич трудился над принципами многозначной математической логики, в которой значениями предикатов могли быть не только «истина» или «ложь». В 1937 году еще один американский ученый М. Блэк впервые применил многозначную логику Лукашевича к спискам как множествам объектов и назвал такие множества неопределенными.

Нечеткая логика как научное направление развивалась непросто, не избежала она и обвинений в лженаучности. Даже в 1989 году, когда примеры успешного применения нечеткой логики в обороне, промышленности и бизнесе исчислялись десятками, Национальное научное общество США обсуждало вопрос об исключении материалов по нечетким множествам из институтских учебников.

Первый период развития нечетких систем (конец 60-х – начало 70-х гг.) характеризуется развитием теоретического аппарата нечетких множеств. В 1970 году Беллман совместно с Заде разработали теорию принятия решений в нечетких условиях.

В 70-80 годы (второй период) появляются первые практические результаты в области нечеткого управления сложными техническими системами (парогенератор с нечетким управлением). И. Мамдани в 1975 году спроектировал первый функционирующий на основе алгебры Заде контроллер, управляющий паровой турбиной. Одновременно стало уделяться внимание вопросам создания экспертных систем, построенных на нечеткой логике, разработке нечетких контроллеров. Нечеткие экспертные системы для поддержки принятия решений нашли широкое применение в медицине и экономике.

Наконец, в третьем периоде, который длится с конца 80-х годов и продолжается в настоящее время, появляются пакеты программ для построения нечетких экспертных систем, а области применения нечеткой логики заметно расширяются. Она применяется в автомобильной, аэрокосмической и транспортной промышленности, в области изделий бытовой техники, в сфере финансов, анализа и принятия управленческих решений и многих других. Кроме того, немалую роль в развитии нечеткой логики сыграло доказательство знаменитой теоремы FAT (Fuzzy Approximation Theorem) Б. Коско, в которой утверждалось, что любую математическую систему можно аппроксимировать системой на основе нечеткой логики.


Информационные системы, базирующиеся на нечетких множествах и нечеткой логике, называют нечеткими системами .

Достоинства нечетких систем:

· функционирование в условиях неопределенности;

· оперирование качественными и количественными данными;

· использование экспертных знаний в управлении;

· построение моделей приближенных рассуждений человека;

· устойчивость при действии на систему всевозможных возмущений.

Недостатками нечетких систем являются:

· отсутствие стандартной методики конструирования нечетких систем;

· невозможность математического анализа нечетких систем существующими методами;

· применение нечеткого подхода по сравнению с вероятностным не приводит к повышению точности вычислений.

Теория нечетких множеств. Главное отличие теории нечетких множеств от классической теории четких множеств состоит в том, что если для четких множеств результатом вычисления характеристической функции могут быть только два значения – 0 или 1, то для нечетких множеств это количество бесконечно, но ограничено диапазоном от нуля до единицы.

Нечеткое множество. Пусть U – так называемое универсальное множество, из элементов которого образованы все остальные множества, рассматриваемые в данном классе задач, например множество всех целых чисел, множество всех гладких функций и т.д. Характеристическая функция множества – это функция , значения которой указывают, является ли элементом множества A:

В теории нечетких множеств характеристическая функция называется функцией принадлежности, а ее значение – степенью принадлежности элемента x нечеткому множеству A.

Более строго: нечетким множеством A называется совокупность пар

где – функция принадлежности, то есть

Пусть, например, U ={a, b, c, d, e}, . Тогда элемент a не принадлежит множеству A, элемент b принадлежит ему в малой степени, элемент c более или менее принадлежит, элемент d принадлежит в значительной степени, e является элементом множества A.

Пример. Пусть универсум U есть множество действительных чисел. Нечеткое множество A, обозначающее множество чисел, близких к 10, можно задать следующей функцией принадлежности (рис. 21.1):

,

Нечёткая логика и нейронные сети

Введение

Нечёткая логика (англ. fuzzy logic) - раздел математики, являющийся обобщением классической логики и теории множеств, базирующийся на понятии нечёткого множества, впервые введённого Лотфи Заде в 1965 году как объекта с функцией принадлежности элемента к множеству, принимающей любые значения в интервале , а не только 0 или 1. На основе этого понятия вводятся различные логические операции над нечёткими множествами и формулируется понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.

Предметом нечёткой логики считается исследование рассуждений в условиях нечёткости, размытости, сходных с рассуждениями в обычном смысле, и их применение в вычислительных системах.

Направления исследований нечёткой логики

В настоящее время существует, по крайней мере, два основных направления научных исследований в области нечёткой логики:

Нечёткая логика в широком смысле (теория приближенных вычислений);

Нечёткая логика в узком смысле (символическая нечёткая логика).

Символическая нечёткая логика

Символическая нечёткая логика основывается на понятии t-нормы . После выбора некоторой t-нормы (а её можно ввести несколькими разными способами) появляется возможность определить основные операции над пропозициональными переменными: конъюнкцию, дизъюнкцию, импликацию, отрицание и другие.

Нетрудно доказать теорему о том, что дистрибутивность, присутствующая в классической логике, выполняется только в случае, когда в качестве t-нормы выбирается t-норма Гёделя.

Кроме того, в силу определенных причин, в качестве импликации чаще всего выбирают операцию, называемую residium (она, вообще говоря, также зависит от выбора t-нормы).

Определение основных операций, перечисленных выше, приводит к формальному определению базисной нечёткой логики, которая имеет много общего с классической булевозначной логикой (точнее, с исчислением высказываний).

Существуют три основных базисных нечётких логики: логика Лукасевича, логика Гёделя и вероятностная логика (англ. product logic). Интересно, что объединение любых двух из трёх перечисленных выше логик приводит к классической булевозначной логике.

Характеристическая функция

Для пространства рассуждения и данной функции принадлежности нечёткое множество определяется как

Функция принадлежности количественно градуирует приналежность элементов фундаментальногомножества пространства рассуждения нечёткому множеству . Значение означает, что элемент не включен в нечёткое множество, описывает полностью включенный элемент. Значения между и характеризуют нечётко включенные элементы.

Нечёткое множество и классическое, четкое (crisp ) множество

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода - {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью

Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при­надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х - возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } – множе­ство марок автомобилей, а Е" = - универсальное множество «Сто­имость», тогда на Е" мы можем определить нечеткие множества типа:

Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при­надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни­версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.

Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е - множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

Логические операции

Включение. Пусть А и В - нечеткие множества на универсальном множестве Е. Говорят, что А содержится в В, если

Обозначение: А В.

Иногда используют термин доминирование, т.е. в случае, ко­гда А В, говорят, что В доминирует А.

Равенство. А и В равны, если

Обозначение: А = В.

Дополнение. Пусть М = , А и В – нечеткие множества, заданные на Е. А и В дополняют друг друга, если

Обозначение:

Очевидно, что (дополнение определено для М = , но очевидно, что его можно определить для любого упорядоченногоМ).

Пересечение. А В - наибольшее нечеткое подмножество, содержащееся одновременно в А и В:

Объединение. A В - наименьшее нечеткое подмножество, включающее как А, так и В, с функцией принадлежности:

Разность. с функцией принадлежности:

Дизъюнктивная сумма

А В = (A - B ) ∪ (B - A ) = (A ̅ B ) ∪ (̅A ⋂ B)

с функцией принадлежности:

Примеры. Пусть

Здесь:

1) А ⊂ В, т. е. А содержится в B или B доминирует А С несравнимо ни с A , ни с В, т.е. пары {А, С } и {А, С } - пары недоминируемых нечетких множеств.

2) A B C

3) ̅A = 0,6/x 1 + 0,8/x 2 + 1/x 3 + 0/x 4 ; ̅B = 0,3/x 1 + 0,1/x 2 + 0,9/x 3 +0/x 4 .

4) А В = 0,4/x 1 + 0,2/x 2 + 0/x 3 + 1 /х 4 .

5) A В = 0,7/x 1 + 0,9/x 2 + 0,1/x 3 + 1/x 4 .

6) А - В = А ̅В = 0,3/x 1 + 0,l/x 2 + 0/x 3 + 0/x 4 ;

В - А= ̅А В = 0,6/x 1 + 0,8/x 2 + 0,l/x 3 + 0/x 4 .

7) А В = 0,6/x 1 + 0,8/x 2 + 0,1/x 3 + 0/x 4 .

Наглядное представление логических операций над нечеткими множествами. Для нечетких множеств можно строить визуальное представление. Рассмотрим прямоуголь­ную систему координат, на оси ординат которой откладываются значения μ А (х), на оси абсцисс в произвольном порядке распо­ложены элементы Е (мы уже использовали такое представление в примерах нечетких множеств). Если Е по своей природе упо­рядочено, то этот порядок желательно сохранить в расположении элементов на оси абсцисс. Такое представление делает нагляд­ными простые логические операции над нечеткими множествами (см. рис. 1.3).

Рис. 1.3. Графическая интерпретация логических операций:
α - нечеткое множество А; б - нечеткое множество̅А, в - А ̅А; г -A ̅А

На рис. 1.3α заштрихованная часть соответствует нечеткому множеству А и, если говорить точно, изображает область значений А и всех нечетких множеств, содержащихся в А. На рис. 1.3б , в, г даны ̅А, А ̅A, A U ̅А.

Свойства операций и

Пусть А, В, С - нечеткие множества, тогда выполняются сле­дующие свойства:

В отличие от четких множеств, для нечетких множеств в общем

A ̅A ≠ ∅, A ∪ ̅A ≠ E

(что, в частности, проиллюстрировано выше в примере наглядного представления нечетких множеств).

Замечание . Введенные выше операции над нечеткими мно­жествами основаны на использовании операций maxи min. В те­ории нечетких множеств разрабатываются вопросы построения обобщенных, параметризованных операторов пересечения, объеди­нения и дополнения, позволяющих учесть разнообразные смысло­вые оттенки соответствующих им связок «и», «или», «не».


Треугольные нормы и конормы

Один из подходов к операторам пересечения и объединения за­ключается в их определении в классе треугольных норм и конорм.

Треугольной нормой(t-нормой) называется бинарная операция (двуместная действительная функция)

1. Ограниченность: .

2. Монотонность: .

3. Коммутативность: .

4. Ассоциативность: .

Примеры треугольных норм

min(μ A , μ B )

произведение μ A · μ B

max(0, μ A + μ B - 1 ).

Треугольной конормой (сокращенно -конормой) называется двухместная действительная функция

удовлетворяющая следующим условиям:

1. Ограниченность: .

2. Монотонность: .

3. Коммутативность: .

4. Ассоциативность: .

Треугольная конорма является архимедовой , если она непрерывна
и для любого нечеткого множества выполнено неравенство .

Она называется строгой, если функция строго убывает по обоим аргументам.


Примеры t-конорм

max(μ A , μ B )

μ A + μ B - μ A · μ B

min(1, μ A + μ B ).

Примерами треугольных конорм являются следующие операторы :

Треугольная норма T и треугольная конорма S называются дополнительными бинарными операциями, если

T(a ,b ) + S (1 − a ,1 − b ) = 1

Наибольшей популярностью в теории Заде пользуются три пары дополнительных треугольных норм и конорм.

1) Пересечение и объединение по Заде:

T Z (a ,b ) = min{a ,b }, S Z (a ,b ) = max{a ,b }.

2) Пересечение и объединение по Лукасевичу:

3) Вероятностное пересечение и объединение:

Операторы дополнения

В теории нечетких множеств оператор дополнения не является единственным.

Помимо общеизвестного

существует целый набор операторов дополнения нечеткого множества .

Пусть задано некоторое отображение

.

Это отображение будет называться оператором отрицания в теории нечетких множеств , если выполняются следующие условия:

Если кроме этого выполняются условия:

(3) - строго убывающая функция

(4) - непрерывная функция

то она называется строгим отрицанием .

Функция называется сильным отрицанием или инволюцией , если наряду с условиями (1) и (2) для нее справедливо:

(5) .

Приведем примеры функции отрицания:

Классическое отрицание: .

Квадратичное отрицание: .

Отрицание Сугено: .

Дополнение порогового типа: .

Будем называть любое значение , для которого , равновесной точкой . Для любого непрерывного отрицания существует единственная равновесная точка.

Нечеткие числа

Нечеткие числа - нечеткие переменные, определенные на числовой оси, т.е. нечеткое число определяется как нечеткое множество А на множестве действительных чисел ℝ с функцией принадлежности μ А (х ) ϵ , где х - действительное число, т.е. х ϵ ℝ.

Нечеткое число А нормально, если тах μ А (x ) = 1; выпуклое, если для любых х у z выполняется

μ А (х) μ А (у ) ˄ μ A (z ).

Множество α -уровня нечеткого числа А определяется как

Аα = {x /μ α (x ) ≥ α }.

Подмножество S A ⊂ ℝ называется носителем нечеткого числа А, если

S A = { x/μ A (x) > 0 }.

Нечеткое число А унимодально, если условие μ А (х ) = 1 спра­ведливо только для одной точки действительной оси.

Выпуклое нечеткое число А называется нечетким нулем, если

μ А (0) = sup (μ A (x )).

Нечеткое число А положительно, если ∀x ϵ S A , х > 0 и отрицательно, если ∀х ϵ S A , х < 0.

Нечеткие числа (L-R)-Tипа

Нечеткие числа (L-R)-типа - это разновидность нечетких чисел специального вида, т.е. задаваемых по определенным правилам с целью снижения объема вычислений при операциях над ними.

Функции принадлежности нечетких чисел (L-R)-типa задаются с помощью невозрастающих на множестве неотрицательных дей­ствительных чисел функций действительного переменного L(x ) и R(x ), удовлетворяющих свойствам:

а) L(-x ) = L(x ), R(-x ) = R(x );

б) L(0) = R(0).

Очевидно, что к классу (L-R)-функций относятся функции, графики которых имеют вид, приведенный на рис. 1.7.

Рис. 1.7. Возможный вид (L-R)-функций

Примерами аналитического задания (L-R)-функций могут быть

Пусть L(у )и R(у )- функции (L-R)-типа (конкретные). Уни­модальное нечеткое число А с модой а (т. е. μ А (а ) = 1) с помощью L(у )и R(у ) задается следующим образом:

где а - мода; α > 0, β > 0 - левый и правый коэффициенты нечеткости.

Таким образом, при заданных L(у )и R(у ) нечеткое число (уни­модальное) задается тройкой А = (а , α, β ).

Толерантное нечеткое число задается, соответственно, четвер­кой параметров А = (a 1 , а 2 , α, β ), где а 1 иа 2 - границы толе­рантности, т.е. в промежутке [a 1 , а 2 ] значение функции принад­лежности равно 1.

Примеры графиков функций принадлежности нечетких чисел (L-R)-типа приведены на рис. 1.8.

Рис. 1.8. Примеры графиков функций принадлежности нечетких чисел (L-R)-типа

Отметим, что в конкретных ситуациях функции L(у), R(у), а также параметры а, β нечетких чисел , α, β ) и (a 1 , а 2 , α, β ) должны подбираться таким образом, чтобы результат операции (сложения, вычитания, деления и т.д.) был точно или приблизи­тельно равен нечеткому числу с теми же L(у) и R(у), а параметры α" и β" результата не выходили за рамки ограничений на эти па­раметры для исходных нечетких чисел, особенно если результат в дальнейшем будет участвовать в операциях.

Замечание . Решение задач математического моделирова­ния сложных систем с применением аппарата нечетких множеств требует выполнения большого объема операций над разного рода лингвистическими и другими нечеткими переменными. Для удоб­ства исполнения операций, а также для ввода-вывода и хранения данных, желательно работать с функциями принадлежности стан­дартного вида.

Нечеткие множества, которыми приходится оперировать в боль­шинстве задач, являются, как правило, унимодальными и нор­мальными. Одним из возможных методов аппроксимации унимо­дальных нечетких множеств является аппроксимация с помощью функций (L-R)-типа.

Примеры (L-R)-представлений некоторых лингвистических пе­ременных приведены в табл. 1.2.

Таблица 1.2. Возможное (L-R)-представление некоторых лингвистических переменных

Нечеткие отношения

Нечеткие отношения играют фундаментальную роль в теории нечетких систем. Аппарат теории нечетких отношений используется при построении теории нечетких автоматов, при моделировании структуры сложных систем, при анализе процессов принятия решений.

Основные определения

Теория нечетких отношений находит также приложение в задачах, в которых традиционно применяется теория обычных (четких) отношений. Как правило, аппарат теории четких отношений используется при качественном анализе взаимосвязей между объектами исследуемой системы, когда связи носят дихотомический характер и могут быть проинтерпретированы в терминах "связь присутствует", "связь отсутствует", либо когда методы количественного анализа взаимосвязей по каким-либо причинам неприменимы и взаимосвязи искусственно приводятся к дихотомическому виду. Например, когда величина связи между объектами принимает значения из ранговой шкалы, выбор порога на силу связи позволяет преобразовать связь к требуемому виду. Однако, подобный подход, позволяя проводить качественный анализ систем, приводит к потере информации о силе связей между объектами либо требует проведения вычислений при разных порогах на силу связей. Этого недостатка лишены методы анализа данных, основанные на теории нечетких отношений , которые позволяют проводить качественный анализ систем с учетом различия в силе связей между объектами системы.

Обычное неразмытое -арное отношение определяется как подмножество декартова произведения множеств

Подобно нечеткому множеству, нечеткое отношение можно задать с помощью его функции принадлежности

где в общем случае будем считать, что - это полная дистрибутивная решетка. Таким образом, - это частично упорядоченное множество, в котором любое непустое подмножество имеет наибольшую нижнюю и наименьшую верхнюю грани иоперации пересечения и объединения в удовлетворяют законам дистрибутивности. Все операции над нечеткими отношениями определяются с помощью этих операций из . Например, если в качестве взять ограниченное множество вещественных чисел, то операциями пересечения и объединения в будут, соответственно, операции и , и этиоперации будут определять и операции над нечеткими отношениями .

Если множества и конечны, нечеткое отношение между и можно представить с помощью его матрицы отношения , первой строке и первому столбцу которой ставятся в соответствие элементы множеств и , а на пересечении строки и столбца помещается элемент (см. табл.2.1).

Таблица 2.1.
0,5 0,8
0,7 0,6 0,3
0,7 0,4

В случае, когда множества и совпадают, нечеткое отношение называют нечетким отношением на множестве X.

В случае конечных или счетных универсальных множеств очевидна интерпретация нечеткого отношения в виде взвешенного графа , в котором каждая пара вершин из соединяется ребром с весом .

Пример . Пусть и , тогда нечеткий граф , изображенный на рис рис. 2.1, задает некотороенечеткое отношение .

Рис. 2.1.

Свойства нечетких отношений

Различные типы нечетких отношений определяются с помощью свойств, аналогичных свойствам обычных отношений, причем для нечетких отношений можно указать различные способы обобщения этих свойств.

1. Рефлексивность :

2. Слабая рефлексивность :

3. Сильная рефлексивность :

4. Антирефлексивность :

5. Слабая антирефлексивность :

6. Сильная антирефлексивность :

7. Симметричность :

8. Антисимметричность :

9. Асимметричность :

10. Сильная линейность :

11. Слабая линейность :

12. Транзитивность :

Проекции нечетких отношений

Важную роль в теории нечетких множеств играет понятие проекции нечеткого отношения . Дадим определение проекции бинарного нечеткого отношения .

Пусть - функция принадлежности нечеткого отношения в . Проекции и отношения на и - есть множества в и с функцией принадлежности вида

Условной проекцией нечеткого отношения на , при произвольном фиксированном , называется множество с функцией принадлежности вида .

Аналогично определяется условная проекция на при заданном :

Из данного определения видно, что проекции и не влияют на условные проекции и , соответственно. Дадим далее определение , которое учитывает их взаимосвязь.

fuzzy logics systems) могут оперировать с неточной качественной информацией и объяснять принятые решения, но не способны автоматически усваивать правила их вывода. Вследствие этого, весьма желательна их кооперация с другими системами обработки информации для преодоления этого недостатка. Подобные системы сейчас активно используются в различных областях, таких как контроль технологических процессов, конструирование, финансовые операции, оценка кредитоспособности, медицинская диагностика и др. Нейронные сети используются здесь для настройки функций принадлежности нечетких систем принятия решений. Такая их способность особенно важна при решении экономических и финансовых задач, поскольку вследствие их динамической природы функции принадлежности неизбежно должны адаптироваться к изменяющимся условиям.

Хотя нечеткая логика может явно использоваться для представления знаний эксперта с помощью правил для лингвистических переменных , обычно требуется очень много времени для конструирования и настройки функций принадлежности, которые количественно определяют эти переменные. Нейросетевые методы обучения автоматизируют этот процесс и существенно сокращают время разработки и затраты на нее, улучшая при этом параметры системы. Системы, использующие нейронные сети для определения параметров нечетких моделей, называются нейронными нечеткими системами. Важнейшим свойством этих систем является их интерпретируемость в терминах нечетких правил if-then.

Подобные системы именуются также кооперативными нейронными нечеткими системами и противопоставляются конкурентным нейронным нечетким системам, в которых нейронные сети и нечеткие системы работают вместе над решением одной и той же задачи, не взаимодействуя друг с другом. При этом нейронная сеть обычно используется для предобработки входов или же для постобработки выходов нечеткой системы.

Кроме них имеются также нечеткие нейронные системы. Так называются нейронные сети, использующие методы нечеткости для ускорения обучения и улучшения своих характеристик. Это может достигаться, например, использованием нечетких правил для изменения темпа обучения или же рассмотрением нейронных сетей с нечеткими значениями входов.

Существует два основных подхода к управлению темпом обучения персептрона методом обратного распространения ошибки . При первом этот темп одновременно и равномерно уменьшается для всех нейронов сети в зависимости от одного глобального критерия - достигнутой среднеквадратичной погрешности на выходном слое. При этом сеть быстро учится на начальном этапе обучения и избегает осцилляций ошибки на позднем. Во втором случае оцениваются изменения отдельных межнейронных связей. Если на двух последующих шагах обучения инкременты связей имеют противоположный знак, то разумно уменьшить соответствующий локальный темп - впротивном случае его следует увеличить. Использование нечетких правил может обеспечить более аккуратное управление локальными темпами модификации связей. В чаcтности это может быть достигнуто, если в качестве входных параметров этих правил использовать последовательные значения градиентов ошибки. Таблица соответствующих правил может иметь, например следующий вид:

Таблица 11.4. Нечеткое правило адаптации темпа обучения нейронной сети
Предыдущий градиент Текущий градиент
NB NS Z PS PB
NB PB PS Z NS NB
NS NS PS Z NS NB
Z NB NS Z NS NB
PS NB NS Z PS NS
PB NB NS Z PS PB

Лингвистические переменные Темп Обучения и Градиент принимают в иллюстрируемом таблицей нечетком правиле адаптации следующие значения: NB - большой отрицательный; NS - малый отрицательный; Z - близок к нулю; PS - малый положительный; PB - большой положительный.

Наконец, в современных гибридных нейронных нечетких системах нейронные сети и нечеткие модели комбинируются в единую гомогенную архитектуру. Такие системы могут интерпретироваться либо как нейронные сети с нечеткими параметрами, либо как параллельные распределенные нечеткие системы.

Элементы нечеткой логики

Центральным понятием нечеткой логики является понятие лингвистической переменной . Согласно Лотфи Заде лингвистической называется переменная, значениями которой являются слова или предложения естественного или искусственного языка. Примером лингвистической переменной является, например, падение производства, если она принимает не числовые, а лингвистические значения, такие как, например, незначительное, заметное, существенное, и катастрофическое. Очевидно, что лингвистические значения нечетко характеризуют имеющуюся ситуацию. Например, падение производства на 3% можно рассматривать и как в какой-то мере незначительное, и как в какой-то мере заметное. Интуитивно ясно, что мера того, что данное падение является катастрофическим должна быть весьма мала.

Название: Нечеткая логика и искусственные нейронные сети.

Как известно, аппарат нечетких множеств и нечеткой логики уже давно (более 10 лет) с успехом применяется для решения задач, в которых исходные данные являются ненадежными и слабо формализованными. Сильные стороны такого подхода:
-описание условий и метода решения задачи на языке, близком к естественному;
-универсальность: согласно знаменитой теореме FAT (Fuzzy Approximation Theorem), доказанной Б.Коско (B.Kosko) в 1993 г., любая математическая система может быть аппроксимирована системой, основанной на нечеткой логике;

Вместе с тем для нечетких экспертных и управляющих систем характерны и определенные недостатки:
1) исходный набор постулируемых нечетких правил формулируется экспертом-человеком и может оказаться неполным или противоречивым;
2) вид и параметры функций принадлежности, описывающих входные и выходные переменные системы, выбираются субъективно и могут оказаться не вполне отражающими реальную действительность.
Для устранения, по крайней мере, частично, указанных недостатков рядом авторов было предложено выполнять нечеткие экспертные и управляющие системы адаптивными - корректируя, по мере работы системы, и правила и параметры функций принадлежности. Среди нескольких вариантов такой адаптации одним из самых удачных, по-видимому, является метод так называемых гибридных нейронных сетей.
Гибридная нейронная сеть формально по структуре идентична многослойной нейронной сети с обучением, например, по алгоритму обратного распространения ошибки, но скрытые слои в ней соответствуют этапам функционирования нечеткой системы. Так:
-1-й слой нейронов выполняет функцию введения нечеткости на основе заданных функций принадлежности входов;
-2-й слой отображает совокупность нечетких правил;
-3-й слой выполняет функцию приведения к четкости.
Каждый из этих слоев характеризуется набором параметров (параметрами функций принадлежности, нечетких решающих правил, акти-
вационных функций, весами связей), настройка которых производится, в сущности, так же, как для обычных нейронных сетей.
В книге рассмотрены теоретические аспекты составляющих подобных сетей, именно, аппарат нечеткой логики, основы теории искусственных нейронных сетей и собственно гибридных сетей применительно к Задачам управления и принятия решений в условиях неопределенности.
Особое внимание уделено программной реализации моделей указанных подходов инструментальными средствами математической системы MATLAB 5.2/5.3.

Предыдущие статьи:

ПИД-регуляторы, описанные выше, имеют плохие показатели качества при управлении нелинейными и сложными системами, а также при недостаточной информации об объекте управления. Характеристики регуляторов в некоторых случаях можно улучшить с помощью методов нечеткой логики, нейронных сетей и генетических алгоритмов. Перечисленные методы за рубежом называют "soft-computing", подчеркивая их отличие от "hard-computing", состоящее в возможности оперировать с неполными и неточными данными. В одном контроллере могут применяться комбинации перечисленных методов (фаззи-ПИД, нейро-ПИД, нейро-фаззи-ПИД регуляторы с генетическими алгоритмами).

Основным недостатком нечетких и нейросетевых контроллеров является сложность их настройки (составления базы нечетких правил и обучения нейронной сети).

5.7.1. Нечеткая логика в ПИД-регуляторах

Нечеткий вывод выполняется следующим образом. Предположим, что область изменения ошибки разделена на множества , область изменения управляющего воздействия - на множества и что с помощью эксперта удалось сформулировать следующие правила работы регулятора [Astrom ]:

Правило 1: если = и = , то =

Правило 2: если = и = , то =

Правило 3: если = и = , то =

Правило 4: если = и = , то =

Правило 5: если = и = , то =

Правило 6: если = и = , то =

Правило 7: если = и = , то =

Правило 8: если = и = , то =

Правило 9: если = и = , то = .

Приведенные правила часто записывают в более компактной табличной форме (рис. 5.91).

Используя правила, можно получить значение управляющей переменной на выходе нечеткого регулятора. Для этого нужно найти функцию принадлежности переменной множеству, образованному в результате выполнения операций вывода над множествами, входящими в систему правил (5.118).

e

Рис. 5.91. Представление нечетких правил в табличной форме

Операция "И" в правилах (5.118) соответствует пересечению множеств, а результат применения всех правил соответствует операции объединения множеств [Рутковская ]. Функция принадлежности для пересечения двух множеств, например, и (см. Правило 1) находится как [Рутковская ]

Функции принадлежности, полученные при пересечении или объединении множеств, могут быть определены различными способами, в зависимости от смысла решаемой задачи. В этом смысле сама теория нечетких множеств тоже является нечеткой. В [Рутковская ] приводится 10 различных определений функции принадлежности для пересечения множеств, но не сказано, какое из них нужно выбрать для решения конкретной задачи. Используют, в частности, более понятную операцию нахождения функций принадлежности в случае пересечения и объединения множеств, имеющую аналогию с правилами умножения и сложения вероятностей:

Однако применение первых двух способов нахождения функции принадлежности обычно более предпочтительно, т.к. при этом сохраняется большинство правил, разработанных для обычных множеств [Усков ].

Функции принадлежности для каждого из множеств , входящих в нечеткую переменную в правилах (5.118), получаются в виде [Рутковская ]

Здесь каждое из 9-ти уравнений соответствует одному из правил (5.118). Результирующая функция принадлежности управляющего воздействия , полученная после применения всех 9-ти правил, находится как объединение функций принадлежности всех правил:

Теперь, когда получена результирующая функция принадлежности управляющего воздействия , возникает вопрос, какое конкретно значение управляющего воздействия нужно выбрать. Если использовать вероятностную интерпретацию теории нечетких множеств, то становится понятно, что такое значение можно получить по аналогии с математическим ожиданием управляющего воздействия в виде:

.

Такой способ дефаззификации является наиболее распространенным, но не единственным.

Для построения нечетких регуляторов обычно используют П, И, ПИ и ПД ПД+И, ПИ+Д и ПИД-законы регулирования [Mann ]. В качестве входных сигналов для системы нечеткого вывода используют сигнал ошибки, приращение ошибки, квадрат ошибки и интеграл от ошибки [Mann ]. Реализация нечеткого ПИД регулятора вызывает проблемы, поскольку он должен иметь трехмерную таблицу правил в соответствии с тремя слагаемыми в уравнении ПИД-регулятора, которую чрезвычайно сложно заполнить, пользуясь ответами эксперта. Большое количество структур ПИД-подобных нечетких контроллеров можно найти в статье [Mann ].

Окончательная настройка нечеткого регулятора или настройка, близкая к оптимальной, до сих пор остается трудной задачей. Для этого используются обучающие алгоритмы style="color:red"> и генетические поисковые методы, требующие больших вычислительных ресурсов и времени.

Применение нечеткой логики для подстройки коэффициентов ПИД-регулятора

Настройка регулятора, выполненная методами, изложенными в разделах "Расчет параметров" и "Автоматическая настройка и адаптация" , не является оптимальной и может быть улучшена с помощью дальнейшей подстройки. Подстройка может быть выполнена оператором на основании правил (см. раздел "Ручная настройка, основанная на правилах") или автоматически, с помощью блока нечеткой логики (рис. 5.92). Блок нечеткой логики (фаззи-блок) использует базу правил подстройки и методы нечеткого вывода. Фаззи-подстройка позволяет уменьшить перерегулирование, снизить время установления и повысить робастность ПИД-регулятора [Yesil ].

Процесс автонастройки регулятора с помощью блока нечеткой логики начинается с поиска начальных приближений коэффициентов регулятора . Это делается обычно методом Зиглера-Никольса, исходя из периода собственных колебаний в замкнутой системе и петлевого усиления. Далее формулируется критериальная функция, необходимая для поиска оптимальных значений параметров настройки методами оптимизации.

В процессе настройки регулятора используют несколько шагов [Hsuan ]. Сначала выбирают диапазоны входных и выходных сигналов блока автонастройки, форму функций принадлежности искомых параметров, правила нечеткого вывода, механизм логического вывода, метод дефаззификации и диапазоны масштабных множителей, необходимых для пересчета четких переменных в нечеткие.

Поиск параметров регулятора выполняется методами оптимизации. Для этого выбирается целевая функция как интеграл от суммы квадратов ошибки регулирования и времени установления. В критерий минимизации иногда добавляют скорость нарастания выходной переменной объекта.

В качестве искомых параметров (параметров, которые надо найти) выбирают положение максимумов функций принадлежности (см. рис. 5.90) и масштабные коэффициенты на входе и выходе фаззи-блока. К задаче оптимизации добавляют ограничения на диапазон изменения позиций функций принадлежности. Оптимизация критериальной функции может быть выполнена, например, с помощью генетических алгоритмов.

Следует отметить, что в случаях, когда информации достаточно для получения точной математической модели объекта, традиционный регулятор всегда будет лучше нечеткого потому, что при синтезе нечеткого регулятора исходные данные заданы приближенно.

5.7.2. Искусственные нейронные сети

Нейронные сети, как и нечеткая логика, используются в ПИД-регуляторах двумя путями: для построения самого регулятора и для построения блока настройки его коэффициентов. Нейронная сеть обладает способностью "обучаться", что позволяет использовать опыт эксперта для обучения нейронной сети искусству настройки коэффициентов ПИД-регулятора. Регулятор с нейронной сетью похож на регулятор с табличным управлением (см. раздел "Табличное управление">), однако отличается специальными методами настройки ("обучения"), разработанными для нейронных сетей и методами интерполяции данных.

В отличие от нечеткого регулятора, где эксперт должен сформулировать правила настройки в лингвистических переменных, при использовании нейронной сети от эксперта не требуется формулировка правил - достаточно, чтобы он несколько раз сам настроил регулятор в процессе "обучения" нейронной сети.

Нейронные сети были предложены в 1943 г. Мак-Каллоком и Питтсом как результат изучения нервной деятельности и биологических нейронов. Искусственный нейрон представляет собой функциональный блок с одним выходом и входами , который реализует в общем случае нелинейное преобразование , где - весовые коэффициенты (параметры) при входных переменных ; - постоянное смещение; - "функция активации " нейрона, например, вида (сигмоидальная функция), где - некоторый параметр. Нейронная сеть (рис. 5.93) состоит из множества связанных между собой нейронов, количество связей может составлять тысячи. Благодаря нелинейности функций активации и большому количеству настраиваемых коэффициентов (в работе [Kato ] использовано 35 нейронов во входном слое и 25 в выходном, при этом количество коэффициентов составило 1850) нейронная сеть может выполнять нелинейное отображение множества входных сигналов во множество выходных.

Типовая структура системы автоматического регулирования с ПИД-регулятором и нейронной сетью в качестве блока автонастройки показана на рис. 5.94 [Kawafuku , Kato ]. Нейронная сеть в данной структуре выполняет роль функционального преобразователя, который для каждого набора сигналов вырабатывает коэффициенты ПИД-регулятора .метод обратного распространения ошибки) [Терехов ]. Используются также другие методы поиска минимума, в том числе генетические алгоритмы, метод моделирования отжига, метод наименьших квадратов.

Процесс обучения нейронной сети выглядит следующим образом (рис. 5.95). Эксперту предоставляют возможность подстраивать параметры регулятора в замкнутой системе автоматического регулирования при различных входных воздействиях . Предполагается, что эксперт умеет это делать с достаточным для практики качеством. Временные диаграммы (осциллограммы) переменных , полученные в системе, подстраиваемой экспертом, записываются в архив и затем подаются на нейронную сеть, подключенную к ПИД-регулятору (рис. 5.95

Рис. 5.95. Схема обучения нейронной сети в блоке автонастройки

Длительность процесса обучения является основной преградой на пути широкого использования методов нейронных сетей в ПИД-регуляторах [Усков ]. Другими недостатками нейронных сетей являются невозможность предсказания погрешности регулирования для входных воздействий, которые не входили в набор обучающих сигналов; отсутствие критериев выбора количества нейронов в сети, длительности обучения, диапазона и количества обучающих воздействий. Ни в одной из публикаций не исследовалась робастность или запас устойчивости регулятора.

5.7.3. Генетические алгоритмы

1. Выбор исходной популяции хромосом размера N.

2. Оценка приспособленности хромосом в популяции.

3. Проверка условия остановки алгоритма.

4. Селекция хромосом.

5. Применение генетических операторов.

6. Формирование новой популяции.

7. Переход к п. 2.

Для работы алгоритма нужно задать нижнюю и верхнюю границы изменения искомых параметров, вероятность скрещивания, вероятность мутации, размер популяции и максимальное количество поколений.

Исходная популяция хромосом генерируется случайным образом. Приспособленность хромосом оценивается с помощью целевой функции в кодированной форме. Далее, хромосомы с лучшей приспособленностью собираются в группу, в пределах которой выполняются генетические операции скрещивания или мутации. Скрещивание позволяет получить от двух родителей перспективного потомка. Оператор мутации вносит изменения в хромосомы. В случае двоичного кодирования мутация состоит в изменении случайного бита в двоичном слове.

Рис. 5.97), затем происходит обмен генетической информацией, расположенной справа от выбранной позиции [Fleming ].

После выполнения генетического алгоритма производят декодирование двоичного представления в инженерные величины.

Оценка приспособленности хромосом в популяции для оценки коэффициентов ПИД-регулятора может быть выбрана, к примеру, как

,

где - текущее значение ошибки регулирования, - время.

Селекция хромосом осуществляется методом рулетки. На колесе рулетки имеются секторы, причем ширина сектора пропорциональна функции приспособленности. Поэтому чем больше значение этой функции, тем более вероятен отбор соответствующей ей хромосомы.